Ziche Liu


2025

pdf bib
Take the essence and discard the dross: A Rethinking on Data Selection for Fine-Tuning Large Language Models
Ziche Liu | Rui Ke | Yajiao Liu | Feng Jiang | Haizhou Li
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Data selection for fine-tuning large language models (LLMs) aims to choose a high-quality subset from existing datasets, allowing the trained model to outperform baselines trained on the full dataset. However, the expanding body of research lacks a clear, unified framework, and the variability in experimental settings complicates systematic comparisons.While existing surveys comprehensively overview the stages and methods of data selection, they often overlook an in-depth exploration of the fine-tuning phase. In this paper, we conduct a focused review of recent data selection techniques for fine-tuning LLMs, analyzing a dozen key studies. We introduce a novel three-stage scheme—comprising feature extraction, criteria design, and selector evaluation—to systematically categorize and evaluate these methods. Additionally, we propose a unified comparison approach that incorporates ratio-based efficiency and ranking-based feasibility metrics to address inconsistencies across experiments. Our findings reveal that methods emphasizing more targeted quality measurement achieve higher efficiency but at the cost of feasibility. Finally, we discuss trends and highlight four key challenges in fine-tuning data selection, offering potential directions for future research.

2024

pdf bib
Humans or LLMs as the Judge? A Study on Judgement Bias
Guiming Hardy Chen | Shunian Chen | Ziche Liu | Feng Jiang | Benyou Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Adopting human and large language models (LLM) as judges (*a.k.a* human- and LLM-as-a-judge) for evaluating the performance of LLMs has recently gained attention. Nonetheless, this approach concurrently introduces potential biases from human and LLMs, questioning the reliability of the evaluation results. In this paper, we propose a novel framework that is free from referencing groundtruth annotations for investigating **Misinformation Oversight Bias**, **Gender Bias**, **Authority Bias** and **Beauty Bias** on LLM and human judges. We curate a dataset referring to the revised Bloom’s Taxonomy and conduct thousands of evaluations. Results show that human and LLM judges are vulnerable to perturbations to various degrees, and that even the cutting-edge judges possess considerable biases. We further exploit these biases to conduct attacks on LLM judges. We hope that our work can notify the community of the bias and vulnerability of human- and LLM-as-a-judge, as well as the urgency of developing robust evaluation systems.

pdf bib
AceGPT, Localizing Large Language Models in Arabic
Huang Huang | Fei Yu | Jianqing Zhu | Xuening Sun | Hao Cheng | Song Dingjie | Zhihong Chen | Mosen Alharthi | Bang An | Juncai He | Ziche Liu | Junying Chen | Jianquan Li | Benyou Wang | Lian Zhang | Ruoyu Sun | Xiang Wan | Haizhou Li | Jinchao Xu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

This paper is devoted to the development of a localized Large Language Model (LLM) specifically for Arabic, a language imbued with unique cultural characteristics inadequately addressed by current mainstream models. Significant concerns emerge when addressing cultural sensitivity and local values. To address this, the paper proposes a comprehensive solution that includes further pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic, alongside Reinforcement Learning with AI Feedback (RLAIF) employing a reward model attuned to local culture and values. The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities. Comprehensive evaluations reveal that the resulting model, dubbed ‘AceGPT’, sets the state-of-the-art standard for open Arabic LLMs across various benchmarks. Codes, data, and models are in https://github.com/FreedomIntelligence/AceGPT.