2025
pdf
bib
abs
LongDocURL: a Comprehensive Multimodal Long Document Benchmark Integrating Understanding, Reasoning, and Locating
Chao Deng
|
Jiale Yuan
|
Pi Bu
|
Peijie Wang
|
Zhong-Zhi Li
|
Jian Xu
|
Xiao-Hui Li
|
Yuan Gao
|
Jun Song
|
Bo Zheng
|
Cheng-Lin Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large vision language models (LVLMs) have improved the document understanding capabilities remarkably, enabling the handling of complex document elements, longer contexts, and a wider range of tasks. However, existing document understanding benchmarks have been limited to handling only a small number of pages and fail to provide a comprehensive analysis of layout elements locating. In this paper, we first define three primary task categories: Long Document Understanding, numerical Reasoning, and cross-element Locating, and then propose a comprehensive benchmark—LongDocURL—integrating above three primary tasks and comprising 20 sub-tasks categorized based on different primary tasks and answer evidences. Furthermore, we develop a semi-automated construction pipeline and collect 2,325 high-quality question-answering pairs, covering more than 33,000 pages of documents, significantly outperforming existing benchmarks. Subsequently, we conduct comprehensive evaluation experiments on both open-source and closed- source models across 26 different configurations, revealing critical performance gaps in this field. The code and data: https://github.com/dengc2023/LongDocURL.
pdf
bib
abs
Enhancing Multimodal Continual Instruction Tuning with BranchLoRA
Duzhen Zhang
|
Yong Ren
|
Zhong-Zhi Li
|
Yahan Yu
|
Jiahua Dong
|
Chenxing Li
|
Zhilong Ji
|
Jinfeng Bai
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multimodal Continual Instruction Tuning (MCIT) aims to finetune Multimodal Large Language Models (MLLMs) to continually align with human intent across sequential tasks. Existing approaches often rely on the Mixture-of-Experts (MoE) LoRA framework to preserve previous instruction alignments. However, these methods are prone to Catastrophic Forgetting (CF), as they aggregate all LoRA blocks via simple summation, which compromises performance over time. In this paper, we identify a critical parameter inefficiency in the MoELoRA framework within the MCIT context. Based on this insight, we propose BranchLoRA, an asymmetric framework to enhance both efficiency and performance. To mitigate CF, we introduce a flexible tuning-freezing mechanism within BranchLoRA, enabling branches to specialize in intra-task knowledge while fostering inter-task collaboration. Moreover, we incrementally incorporate task-specific routers to ensure an optimal branch distribution over time, rather than favoring the most recent task. To streamline inference, we introduce a task selector that automatically routes test inputs to the appropriate router without requiring task identity. Extensive experiments on the latest MCIT benchmark demonstrate that BranchLoRA significantly outperforms MoELoRA and maintains its superiority across various MLLM sizes.
2024
pdf
bib
abs
GeoEval: Benchmark for Evaluating LLMs and Multi-Modal Models on Geometry Problem-Solving
Jiaxin Zhang
|
Zhong-Zhi Li
|
Ming-Liang Zhang
|
Fei Yin
|
Cheng-Lin Liu
|
Yashar Moshfeghi
Findings of the Association for Computational Linguistics: ACL 2024
Recent advancements in large language models (LLMs) and multi-modal models (MMs) have demonstrated their remarkable capabilities in problem-solving. Yet, their proficiency in tackling geometry math problems, which necessitates an integrated understanding of both textual and visual information, has not been thoroughly evaluated. To address this gap, we introduce the GeoEval benchmark, a comprehensive collection that includes a main subset of 2,000 problems, a 750 problems subset focusing on backward reasoning, an augmented sub- set of 2,000 problems, and a hard subset of 300 problems. This benchmark facilitates a deeper investigation into the performance of LLMs and MMs in solving geometry math problems. Our evaluation of ten LLMs and MMs across these varied subsets reveals that the WizardMath model excels, achieving a 55.67% accuracy rate on the main subset but only a 6.00% accuracy on the hard subset. This highlights the critical need for testing models against datasets on which they have not been pre-trained. Additionally, our findings indicate that GPT-series models perform more effectively on problems they have rephrased, suggesting a promising method for enhancing model capabilities.
pdf
bib
abs
LANS: A Layout-Aware Neural Solver for Plane Geometry Problem
Zhong-Zhi Li
|
Ming-Liang Zhang
|
Fei Yin
|
Cheng-Lin Liu
Findings of the Association for Computational Linguistics: ACL 2024
Geometry problem solving (GPS) is a challenging mathematical reasoning task requiring multi-modal understanding, fusion, and reasoning. Existing neural solvers take GPS as a vision-language task but are short in the representation of geometry diagrams that carry rich and complex layout information. In this paper, we propose a layout-aware neural solver named LANS, integrated with two new modules: multimodal layout-aware pre-trained language module (MLA-PLM) and layout-aware fusion attention (LA-FA). MLA-PLM adopts structural-semantic pre-training (SSP) to implement global relationship modeling, and point-match pre-training (PMP) to achieve alignment between visual points and textual points. LA-FA employs a layout-aware attention mask to realize point-guided cross-modal fusion for further boosting layout awareness of LANS. Extensive experiments on datasets Geometry3K and PGPS9K validate the effectiveness of the layout-aware modules and superior problem-solving performance of our LANS solver, over existing symbolic and neural solvers. We have made our code and data publicly available.