Zhixin Zhang


2025

pdf bib
Filter-And-Refine: A MLLM Based Cascade System for Industrial-Scale Video Content Moderation
Zixuan Wang | Jinghao Shi | Hanzhong Liang | Xiang Shen | Vera Wen | Zhiqian Chen | Yifan Wu | Zhixin Zhang | Hongyu Xiong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Effective content moderation is essential for video platforms to safeguard user experience and uphold community standards. While traditional video classification models effectively handle well-defined moderation tasks, they struggle with complicated scenarios such as implicit harmful content and contextual ambiguity. Multimodal large language models (MLLMs) offer a promising solution to these limitations with their superior cross-modal reasoning and contextual understanding. However, two key challenges hinder their industrial adoption. First, the high computational cost of MLLMs makes full-scale deployment impractical. Second, adapting generative models for discriminative classification remains an open research problem. In this paper, we first introduce an efficient method to transform a generative MLLM into a multimodal classifier using minimal discriminative training data. To enable industry-scale deployment, we then propose a router-ranking cascade system that integrates MLLMs with a lightweight router model. Offline experiments demonstrate that our MLLM-based approach improves F1 score by 66.50% over traditional classifiers while requiring only 2% of the fine-tuning data. Online evaluations show that our system increases automatic content moderation volume by 41%, while the cascading deployment reduces computational cost to only 1.5% of direct full-scale deployment.

pdf bib
Debt Collection Negotiations with Large Language Models: An Evaluation System and Optimizing Decision Making with Multi-Agent
Xiaofeng Wang | Zhixin Zhang | Jin Guang Zheng | Yiming Ai | Rui Wang
Findings of the Association for Computational Linguistics: ACL 2025

Debt collection negotiations (DCN) are vital for managing non-performing loans (NPLs) and reducing creditor losses. Traditional methods are labor-intensive, while large language models (LLMs) offer promising automation potential. However, prior systems lacked dynamic negotiation and real-time decision-making capabilities. This paper explores LLMs in automating DCN and proposes a novel evaluation framework with 13 metrics across 4 aspects. Our experiments reveal that LLMs tend to over-concede compared to human negotiators. To address this, we propose the Multi-Agent Debt Negotiation (MADeN) framework, incorporating planning and judging modules to improve decision rationality. We also apply post-training techniques, including DPO with rejection sampling, to optimize performance. Our studies provide valuable insights for practitioners and researchers seeking to enhance efficiency and outcomes in this domain.