This is an internal, temporary preview of a proposed change to the ACL Anthology.
It may be incomplete or contain mistakes.
Please do not link to this content or treat it as official.
It will be removed when the change is merged or abandoned.
Knowledge graph embedding (KGE) aims to embed entities and relations as vectors in a continuous space and has proven to be effective for KG tasks. Recently, graph neural networks (GNN) based KGEs gain much attention due to their strong capability of encoding complex graph structures. However, most GNN-based KGEs are directly optimized based on the instance triples in KGs, ignoring the latent concepts and hierarchies of the entities. Though some works explicitly inject concepts and hierarchies into models, they are limited to predefined concepts and hierarchies, which are missing in a lot of KGs. Thus in this paper, we propose a novel framework with KG Pooling and unpooling and Contrastive Learning (KGPCL) to abstract and encode the latent concepts for better KG prediction. Specifically, with an input KG, we first construct a U-KG through KG pooling and unpooling. KG pooling abstracts the input graph to a smaller graph as a pooled graph, and KG unpooling recovers the input graph from the pooled graph. Then we model the U-KG with relational KGEs to get the representations of entities and relations for prediction. Finally, we propose the local and global contrastive loss to jointly enhance the representation of entities. Experimental results show that our models outperform the KGE baselines on link prediction task.
Large language models have demonstrated outstanding performance in various natural language processing tasks, but their security capabilities in the financial domain have not been explored, and their performance on complex tasks like financial agent remains unknown. This paper presents FinEval, a benchmark designed to evaluate LLMs’ financial domain knowledge and practical abilities. The dataset contains 8,351 questions categorized into four different key areas: Financial Academic Knowledge, Financial Industry Knowledge, Financial Security Knowledge, and Financial Agent. Financial Academic Knowledge comprises 4,661 multiple-choice questions spanning 34 subjects such as finance and economics. Financial Industry Knowledge contains 1,434 questions covering practical scenarios like investment research. Financial Security Knowledge assesses models through 1,640 questions on topics like application security and cryptography. Financial Agent evaluates tool usage and complex reasoning with 616 questions. FinEval has multiple evaluation settings, including zero-shot, five-shot with chain-of-thought, and assesses model performance using objective and subjective criteria. Our results show that Claude 3.5-Sonnet achieves the highest weighted average score of 72.9 across all financial domain categories under zero-shot setting. Our work provides a comprehensive benchmark closely aligned with Chinese financial domain. The data and the code are available at https://github.com/SUFE-AIFLMLab/FinEval.
The automatic generation of music comments is of great significance for increasing the popularity of music and the music platform’s activity. In human music comments, there exists high distinction and diverse perspectives for the same song. In other words, for a song, different comments stem from different musical perspectives. However, to date, this characteristic has not been considered well in research on automatic comment generation. The existing methods tend to generate common and meaningless comments. In this paper, we propose an effective multi-perspective strategy to enhance the diversity of the generated comments. The experiment results on two music comment datasets show that our proposed model can effectively generate a series of diverse music comments based on different perspectives, which outperforms state-of-the-art baselines by a substantial margin.
Rhetoric is a vital element in modern poetry, and plays an essential role in improving its aesthetics. However, to date, it has not been considered in research on automatic poetry generation. In this paper, we propose a rhetorically controlled encoder-decoder for modern Chinese poetry generation. Our model relies on a continuous latent variable as a rhetoric controller to capture various rhetorical patterns in an encoder, and then incorporates rhetoric-based mixtures while generating modern Chinese poetry. For metaphor and personification, an automated evaluation shows that our model outperforms state-of-the-art baselines by a substantial margin, while human evaluation shows that our model generates better poems than baseline methods in terms of fluency, coherence, meaningfulness, and rhetorical aesthetics.