Zhipeng Bian


2025

pdf bib
MIRA: Empowering One-Touch AI Services on Smartphones with MLLM-based Instruction Recommendation
Zhipeng Bian | Jieming Zhu | Xuyang Xie | Quanyu Dai | Zhou Zhao | Zhenhua Dong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

The rapid advancement of generative AI technologies is driving the integration of diverse AI-powered services into smartphones, transforming how users interact with their devices. To simplify access to predefined AI services, this paper introduces MIRA, a pioneering framework for task instruction recommendation that enables intuitive one-touch AI tasking on smartphones. With MIRA, users can long-press on images or text objects to receive contextually relevant instruction recommendations for executing AI tasks. Our work introduces three key innovations: 1) A multimodal large language model (MLLM)-based recommendation pipeline with structured reasoning to extract key entities, infer user intent, and generate precise instructions; 2) A template-augmented reasoning mechanism that integrates high-level reasoning templates, enhancing task inference accuracy; 3) A prefix-tree-based constrained decoding strategy that restricts outputs to predefined instruction candidates, ensuring coherence and intent alignment. Through evaluation using a real-world annotated datasets and a user study, MIRA has demonstrated substantial improvements in recommendation accuracy. The encouraging results highlight MIRA’s potential to revolutionize the way users engage with AI services on their smartphones, offering a more seamless and efficient experience.