Zhenxi Song
2025
BrainECHO: Semantic Brain Signal Decoding through Vector-Quantized Spectrogram Reconstruction for Whisper-Enhanced Text Generation
Jilong Li
|
Zhenxi Song
|
Jiaqi Wang
|
Meishan Zhang
|
Honghai Liu
|
Min Zhang
|
Zhiguo Zhang
Findings of the Association for Computational Linguistics: ACL 2025
Current EEG/MEG-to-text decoding systems suffer from three key limitations: (1) reliance on teacher-forcing methods, which compromises robustness during inference, (2) sensitivity to session-specific noise, hindering generalization across subjects, and (3) misalignment between brain signals and linguistic representations due to pre-trained language model over-dominance. To overcome these challenges, we propose BrainECHO (Brain signal decoding via vEctor-quantized speCtrogram reconstruction for WHisper-enhanced text generatiOn), a multi-stage framework that employs decoupled representation learning to achieve state-of-the-art performance on both EEG and MEG datasets. Specifically, BrainECHO consists of three stages: (1) Discrete autoencoding, which transforms continuous Mel spectrograms into a finite set of high-quality discrete representations for subsequent stages. (2) Frozen alignment, where brain signal embeddings are mapped to corresponding Mel spectrogram embeddings in a frozen latent space, effectively filtering session-specific noise through vector-quantized reconstruction, yielding a 3.65% improvement in BLEU-4 score. (3) Constrained decoding fine-tuning, which leverages the pre-trained Whisper model for audio-to-text translation, balancing signal adaptation with knowledge preservation, and achieving 74%-89% decoding BLEU scores without excessive reliance on teacher forcing. BrainECHO demonstrates robustness across sentence, session, and subject-independent conditions, passing Gaussian noise tests and showcasing its potential for enhancing language-based brain-computer interfaces.
2024
Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder
Jiaqi Wang
|
Zhenxi Song
|
Zhengyu Ma
|
Xipeng Qiu
|
Min Zhang
|
Zhiguo Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Reconstructing natural language from non-invasive electroencephalography (EEG) holds great promise as a language decoding technology for brain-computer interfaces (BCIs). However, EEG-based language decoding is still in its nascent stages, facing several technical issues such as: 1) Absence of a hybrid strategy that can effectively integrate cross-modality (between EEG and text) self-learning with intra-modality self-reconstruction of EEG features or textual sequences; 2) Under-utilization of large language models (LLMs) to enhance EEG-based language decoding. To address above issues, we propose the Contrastive EEG-Text Masked Autoencoder (CET-MAE), a novel model that orchestrates compound self-supervised learning across and within EEG and text through a dedicated multi-stream encoder. Furthermore, we develop a framework called E2T-PTR (EEG-to-Text decoding using Pretrained Transferable Representations), which leverages pre-trained modules alongside the EEG stream from CET-MAE and further enables an LLM (specifically BART) to decode text from EEG sequences. Comprehensive experiments conducted on the popular text-evoked EEG database, ZuCo, demonstrate the superiority of E2T-PTR, which outperforms the baseline framework in ROUGE-1 F1 and BLEU-4 scores by 8.34% and 32.21%, respectively. Our proposed pre-trained EEG-Text model shows the potential to improve downstream tasks involving EEG and text. This opens up promising avenues for its application in inner speech BCI paradigms, meriting further investigation.
Search
Fix author
Co-authors
- Jiaqi Wang 2
- Min Zhang (张民) 2
- Zhiguo Zhang 2
- Jilong Li 1
- Honghai Liu 1
- show all...