Zhenmin Weng


2025

pdf bib
Let’s Be Self-generated via Step by Step: A Curriculum Learning Approach to Automated Reasoning with Large Language Models
Kangyang Luo | Zichen Ding | Zhenmin Weng | Lingfeng Qiao | Meng Zhao | Xiang Li | Di Yin | Jinlong Shu
Findings of the Association for Computational Linguistics: ACL 2025

While Chain of Thought (CoT) prompting approaches have significantly consolidated the reasoning capabilities of large language models (LLMs), they still face limitations that require extensive human effort or have performance needs to be improved. Existing endeavors have focused on bridging these gaps; however, these approaches either hinge on external data and cannot completely eliminate manual effort, or they fall short in effectively directing LLMs to generate high-quality exemplary prompts. To address the said pitfalls, we propose a novel prompt approach for automatic reasoning named LBS3, inspired by curriculum learning which better reflects human learning habits. Specifically, LBS3 initially steers LLMs to recall easy-to-hard proxy queries that are pertinent to the target query. Following this, it invokes a progressive strategy that utilizes exemplary prompts stemmed from easy-proxy queries to direct LLMs in solving hard-proxy queries, enabling the high-quality of the proxy solutions. Finally, our extensive experiments in various reasoning-intensive tasks with varying open- and closed-source LLMs show that LBS3 achieves strongly competitive performance compared to the SOTA baselines.

2024

pdf bib
Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis
Jianxiang Yu | Zichen Ding | Jiaqi Tan | Kangyang Luo | Zhenmin Weng | Chenghua Gong | Long Zeng | RenJing Cui | Chengcheng Han | Qiushi Sun | Zhiyong Wu | Yunshi Lan | Xiang Li
Findings of the Association for Computational Linguistics: EMNLP 2024

In recent years, the rapid increase in scientific papers has overwhelmed traditional review mechanisms, resulting in varying quality of publications. Although existing methods have explored the capabilities of Large Language Models (LLMs) for automated scientific reviewing, their generated contents are often generic or partial. To address the issues above, we introduce an automated paper reviewing framework SEA. It comprises of three modules: Standardization, Evaluation, and Analysis, which are represented by models SEA-S, SEA-E, and SEA-A, respectively. Initially, SEA-S distills data standardization capabilities of GPT-4 for integrating multiple reviews for a paper. Then, SEA-E utilizes standardized data for fine-tuning, enabling it to generate constructive reviews. Finally, SEA-A introduces a new evaluation metric called mismatch score to assess the consistency between paper contents and reviews. Moreover, we design a self-correction strategy to enhance the consistency. Extensive experimental results on datasets collected from eight venues show that SEA can generate valuable insights for authors to improve their papers.