Zhenheng Tang
2025
MegaAgent: A Large-Scale Autonomous LLM-based Multi-Agent System Without Predefined SOPs
Qian Wang
|
Tianyu Wang
|
Zhenheng Tang
|
Qinbin Li
|
Nuo Chen
|
Jingsheng Liang
|
Bingsheng He
Findings of the Association for Computational Linguistics: ACL 2025
LLM-based multi-agent systems (MAS) have shown promise in tackling complex tasks. However, existing solutions often suffer from limited agent coordination and heavy reliance on predefined Standard Operating Procedures (SOPs), which demand extensive human input. To address these limitations, we propose MegaAgent, a large-scale autonomous LLM-based multi-agent system. MegaAgent generates agents based on task complexity and enables dynamic task decomposition, parallel execution, efficient communication, and comprehensive system monitoring of agents. In evaluations, MegaAgent demonstrates exceptional performance, successfully developing a Gobang game within 800 seconds and scaling up to 590 agents in a national policy simulation to generate multi-domain policies. It significantly outperforms existing systems, such as MetaGPT, in both task completion efficiency and scalability. By eliminating the need for predefined SOPs, MegaAgent demonstrates exceptional scalability and autonomy, setting a foundation for advancing true autonomy in MAS.
2024
LPZero: Language Model Zero-cost Proxy Search from Zero
Peijie Dong
|
Lujun Li
|
Xiang Liu
|
Zhenheng Tang
|
Xuebo Liu
|
Qiang Wang
|
Xiaowen Chu
Findings of the Association for Computational Linguistics: EMNLP 2024
Despite the outstanding performance, Neural Architecture Search (NAS) is criticized for massive computation. Recently, Zero-shot NAS has emerged as a promising approach by exploiting Zero-cost (ZC) proxies, which markedly reduce computational demands. Despite this, existing ZC proxies heavily rely on expert knowledge and incur significant trial-and-error costs. Particularly in NLP tasks, most existing ZC proxies fail to surpass the performance of the naive baseline. To address these challenges, we introduce a novel framework, LPZero, which is the first to automatically design zero-cost (ZC) proxies for various tasks, achieving higher ranking consistency than human-designed proxies. Specifically, we model the ZC proxy as a symbolic equation and incorporate a unified proxy search space that encompasses existing ZC proxies, which are composed of a predefined set of mathematical symbols. To heuristically search for the best ZC proxy, LPZero incorporates genetic programming to find the optimal symbolic composition. We propose a Predictive-Pruning Strategy (PPS), which preemptively eliminates unpromising proxies, thereby mitigating the risk of proxy degradation. Extensive experiments on FlexiBERT, GPT-2, and LLaMA-7B demonstrate LPZero’s superior ranking ability and performance on downstream tasks compared to current approaches.
Search
Fix author
Co-authors
- Nuo Chen 1
- Xiaowen Chu 1
- Peijie Dong 1
- Bingsheng He 1
- Lujun Li 1
- show all...