Zhanshuo Cao
2025
Length-Induced Embedding Collapse in PLM-based Models
Yuqi Zhou
|
Sunhao Dai
|
Zhanshuo Cao
|
Xiao Zhang
|
Jun Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Text embeddings from PLM-based models enable a wide range of applications, yet their performance often degrades on longer texts. In this paper, we introduce a phenomenon we call Length Collapse, where embeddings of longer texts tend to cluster together. This clustering results in a distributional inconsistency between the embeddings of short and long texts. We further investigate how these differences contribute to the performance decline observed with longer texts across various downstream tasks. Through a rigorous theoretical analysis of the self-attention mechanism, which acts as a low-pass filter in PLM-based models, we demonstrate that as text length increases, the strength of low-pass filtering intensifies, causing embeddings to retain more low-frequency components. As a result, input token features become more similar, leading to clustering and ultimately the collapse of embeddings for longer texts. To address this issue, we propose a simple method, TempScale, which mitigates the Length Collapse phenomenon. By narrowing the gap in low-pass filtering rates between long and short texts, TempScale ensures more consistent embeddings across different text lengths. This approach leads to performance improvements of 0.94% on MTEB and 1.10% on LongEmbed, which focuses specifically on long-context retrieval, providing strong evidence for the validity of our analysis. The source code is available at bluehttps://github.com/Yuqi-Zhou/Length_Collapse.