Zejiang He
2025
LLM-based Rumor Detection via Influence Guided Sample Selection and Game-based Perspective Analysis
Zhiliang Tian
|
Jingyuan Huang
|
Zejiang He
|
Zhen Huang
|
Menglong Lu
|
Linbo Qiao
|
Songzhu Mei
|
Yijie Wang
|
Dongsheng Li
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Rumor detection on social media has become an emerging topic. Traditional deep learning-based methods model rumors based on content, propagation structure, or user behavior, but these approaches are constrained by limited modeling capacity and insufficient training corpora. Recent studies have explored using LLMs for rumor detection through supervised fine-tuning (SFT), but face two issues: 1) unreliable samples sometimes mislead the model learning; 2) the model only learns the most salient input-output mapping and skips in-depth analyses of the rumored content for convenience. To address these issues, we propose an SFT-based LLM rumor detection model with Influence guided Sample selection and Game-based multi-perspective Analysis (ISGA). Specifically, we first introduce the Influence Score (IS) to assess the impact of samples on model predictions and select samples for SFT. We also approximate IS via Taylor expansion to reduce computational complexity. Next, we use LLMs to generate in-depth analyses of news content from multiple perspectives and model their collaborative process for prediction as a cooperative game. Then we utilize the Shapley value to quantify the contribution of each perspective for selecting informative perspective analyses. Experiments show that ISGA excels existing SOTA on three datasets.
MONTROSE: LLM-driven Monte Carlo Tree Search Self-Refinement for Cross-Domain Rumor Detection
Shanshan Liu
|
Menglong Lu
|
Zhen Huang
|
Zejiang He
|
Liu Liu
|
Zhigang Sun
|
Dongsheng Li
Findings of the Association for Computational Linguistics: ACL 2025
With the emergence of new topics on social media as sources of rumor dissemination, addressing the distribution shifts between source and target domains remains a crucial task in cross-domain rumor detection. Existing feature alignment methods, which aim to reduce the discrepancies between domains, are often susceptible to task interference during training. Additionally, data distribution alignment methods, which rely on existing data to synthesize new training samples, inherently introduce noise. To deal with these challenges, a new cross-domain rumor detection method, MONTROSE, is proposed. It combines LLM-driven Monte Carlo Tree Search (MCTS) data synthesis to generate high-quality synthetic data for the target domain and a domain-sharpness-aware (DSAM) self-refinement approach to train rumor detection models with these synthetic data effectively. Experiments demonstrate the superior performance of MONTROSE in cross-domain rumor detection.
Search
Fix author
Co-authors
- Zhen Huang 2
- Dongsheng Li 2
- Menglong Lu 2
- Jingyuan Huang 1
- Shanshan Liu 1
- show all...