Yuzhe Ding


2025

pdf bib
Zero-Shot Conversational Stance Detection: Dataset and Approaches
Yuzhe Ding | Kang He | Bobo Li | Li Zheng | Haijun He | Fei Li | Chong Teng | Donghong Ji
Findings of the Association for Computational Linguistics: ACL 2025

Stance detection, which aims to identify public opinion towards specific targets using social media data, is an important yet challenging task. With the increasing number of online debates among social media users, conversational stance detection has become a crucial research area. However, existing conversational stance detection datasets are restricted to a limited set of specific targets, which constrains the effectiveness of stance detection models when encountering a large number of unseen targets in real-world applications. To bridge this gap, we manually curate a large-scale, high-quality zero-shot conversational stance detection dataset, named ZS-CSD, comprising 280 targets across two distinct target types. Leveraging the ZS-CSD dataset, we propose SITPCL, a speaker interaction and target-aware prototypical contrastive learning model, and establish the benchmark performance in the zero-shot setting. Experimental results demonstrate that our proposed SITPCL model achieves state-of-the-art performance in zero-shot conversational stance detection. Notably, the SITPCL model attains only an F1-macro score of 43.81%, highlighting the persistent challenges in zero-shot conversational stance detection.

pdf bib
DALR: Dual-level Alignment Learning for Multimodal Sentence Representation Learning
Kang He | Yuzhe Ding | Haining Wang | Fei Li | Chong Teng | Donghong Ji
Findings of the Association for Computational Linguistics: ACL 2025

Previous multimodal sentence representation learning methods have achieved impressive performance. However, most approaches focus on aligning images and text at a coarse level, facing two critical challenges: cross-modal misalignment bias and intra-modal semantic divergence, which significantly degrade sentence representation quality. To address these challenges, we propose DALR (Dual-level Alignment Learning for Multimodal Sentence Representation). For cross-modal alignment, we propose a consistency learning module that softens negative samples and utilizes semantic similarity from an auxiliary task to achieve fine-grained cross-modal alignment. Additionally, we contend that sentence relationships go beyond binary positive-negative labels, exhibiting a more intricate ranking structure. To better capture these relationships and enhance representation quality, we integrate ranking distillation with global intra-modal alignment learning. Comprehensive experiments on semantic textual similarity (STS) and transfer (TR) tasks validate the effectiveness of our approach, consistently demonstrating its superiority over state-of-the-art baselines.