2025
pdf
bib
abs
Sliding Windows Are Not the End: Exploring Full Ranking with Long-Context Large Language Models
Wenhan Liu
|
Xinyu Ma
|
Yutao Zhu
|
Ziliang Zhao
|
Shuaiqiang Wang
|
Dawei Yin
|
Zhicheng Dou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) have shown exciting performance in listwise passage ranking. Due to the limited input length, existing methods often adopt the sliding window strategy. Such a strategy, though effective, is inefficient as it involves repetitive and serialized processing, which usually re-evaluates relevant passages multiple times. As a result, it incurs redundant API costs, which are proportional to the number of inference tokens. The development of long-context LLMs enables the full ranking of all passages within a single inference, avoiding redundant API costs. In this paper, we conduct a comprehensive study of long-context LLMs for ranking tasks in terms of efficiency and effectiveness. Surprisingly, our experiments reveal that full ranking with long-context LLMs can deliver superior performance in the supervised fine-tuning setting with a huge efficiency improvement. Furthermore, we identify two limitations of fine-tuning the full ranking model based on existing methods: (1) sliding window strategy fails to produce a full ranking list as a training label, and (2) the language modeling loss cannot emphasize top-ranked passage IDs in the label. To alleviate these issues, we propose a new complete listwise label construction approach and a novel importance-aware learning objective for full ranking. Experiments show the superior performance of our method over baselines.
pdf
bib
abs
Hierarchical Document Refinement for Long-context Retrieval-augmented Generation
Jiajie Jin
|
Xiaoxi Li
|
Guanting Dong
|
Yuyao Zhang
|
Yutao Zhu
|
Yongkang Wu
|
Zhonghua Li
|
Ye Qi
|
Zhicheng Dou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Real-world RAG applications often encounter long-context input scenarios, where redundant information and noise results in higher inference costs and reduced performance. To address these challenges, we propose LongRefiner, an efficient plug-and-play refiner that leverages the inherent structural characteristics of long documents. LongRefiner employs dual-level query analysis, hierarchical document structuring, and adaptive refinement through multi-task learning on a single foundation model. Experiments on seven QA datasets demonstrate that LongRefiner achieves competitive performance in various scenarios while using 10x fewer computational costs and latency compared to the best baseline. Further analysis validates that LongRefiner is scalable, efficient, and effective, providing practical insights for real-world long-text RAG applications. Our code is available at https://github.com/ignorejjj/LongRefiner.
pdf
bib
abs
RAG-Critic: Leveraging Automated Critic-Guided Agentic Workflow for Retrieval Augmented Generation
Guanting Dong
|
Jiajie Jin
|
Xiaoxi Li
|
Yutao Zhu
|
Zhicheng Dou
|
Ji-Rong Wen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Retrieval-augmented generation (RAG) has emerged as a pivotal technology in natural language processing, owing to its efficacy in generating factual content. However, its informative inputs and complex paradigms often lead to a greater variety of errors. Consequently, achieving automated on-policy assessment and error-oriented correction remain unresolved issues. In this paper, we propose RAG-Critic, a novel framework that leverages a critic-guided agentic workflow to improve RAG capabilities autonomously. Specifically, we initially design a data-driven error mining pipeline to establish a hierarchical RAG error system. Based on this system, we progressively align an error-critic model using a coarse-to-fine training objective, which automatically provides fine-grained error feedback. Finally, we design a critic-guided agentic RAG workflow that customizes executor-based solution flows based on the error-critic model’s feedback, facilitating an error-driven self-correction process. Experimental results across seven RAG-related datasets confirm the effectiveness of RAG-Critic, while qualitative analysis offers practical insights for achieving reliable RAG systems. Our dataset and code are available at https://github.com/RUC-NLPIR/RAG-Critic.
pdf
bib
abs
Progressive Multimodal Reasoning via Active Retrieval
Guanting Dong
|
Chenghao Zhang
|
Mengjie Deng
|
Yutao Zhu
|
Zhicheng Dou
|
Ji-Rong Wen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multi-step multimodal reasoning tasks pose significant challenges for multimodal large language models (MLLMs), and finding effective ways to enhance their performance in such scenarios remains an unresolved issue. In this paper, we propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs through Active Retrieval (AR) and Monte Carlo Tree Search (MCTS). AR-MCTS follows the MCTS algorithm and heuristically integrates an active retrieval mechanism during the expansion stage to automatically acquire high-quality step-wise reasoning annotations. Moreover, we further introduce curriculum training objectives to progressively align with a process reward model, ultimately achieving process-level multimodal reasoning verification. Experimental results across three complex multimodal reasoning benchmarks confirm the effectiveness of AR-MCTS. Further analysis demonstrates that it can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
pdf
bib
abs
YuLan-Mini: Pushing the Limits of Open Data-efficient Language Model
Hu Yiwen
|
Huatong Song
|
Jie Chen
|
Jia Deng
|
Jiapeng Wang
|
Kun Zhou
|
Yutao Zhu
|
Jinhao Jiang
|
Zican Dong
|
Yang Lu
|
Xu Miao
|
Xin Zhao
|
Ji-Rong Wen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Due to the immense resource demands and the involved complex techniques, it is still challenging for successfully pre-training a large language models (LLMs) with state-of-the-art performance. In this paper, we explore the key bottlenecks and designs during pre-training, and make the following contributions: (1) a comprehensive investigation into the factors contributing to training instability; (2) a robust optimization approach designed to mitigate training instability effectively; (3) an elaborate data pipeline that integrates data synthesis, data curriculum, and data selection. By integrating the above techniques, we create a rather low-cost training recipe and use it to pre-train YuLan-Mini, a fully-open base model with 2.4B parameters on 1.08T tokens. Remarkably, YuLan-Mini achieves top-tier performance among models of similar parameter scale, with comparable performance to industry-leading models that require significantly more data. To facilitate reproduction, we release the full details of training recipe and data composition. Project details can be accessed at the following link: https://anonymous.4open.science/r/YuLan-Mini/README.md.
pdf
bib
abs
Towards Effective and Efficient Continual Pre-training of Large Language Models
Jie Chen
|
Zhipeng Chen
|
Jiapeng Wang
|
Kun Zhou
|
Yutao Zhu
|
Jinhao Jiang
|
Yingqian Min
|
Xin Zhao
|
Zhicheng Dou
|
Jiaxin Mao
|
Yankai Lin
|
Ruihua Song
|
Jun Xu
|
Xu Chen
|
Rui Yan
|
Zhewei Wei
|
Di Hu
|
Wenbing Huang
|
Ji-Rong Wen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Continual pre-training (CPT) has been an important approach for adapting language models to specific domains or tasks. In this paper, we comprehensively study its key designs to balance the new abilities while retaining the original abilities, and present an effective CPT method that can greatly improve the Chinese language ability and scientific reasoning ability of LLMs. To achieve it, we design specific data mixture and curriculum strategies based on existing datasets and synthetic high-quality data. Concretely, we synthesize multidisciplinary scientific QA pairs based on related web pages to guarantee the data quality, and also devise the performance tracking and data mixture adjustment strategy to ensure the training stability. For the detailed designs, we conduct preliminary studies on a relatively small model, and summarize the findings to help optimize our CPT method. Extensive experiments on a number of evaluation benchmarks show that our approach can largely improve the performance of Llama-3 (8B), including both the general abilities (+8.81 on C-Eval and +6.31 on CMMLU) and the scientific reasoning abilities (+12.00 on MATH and +4.13 on SciEval). Our model, data, and codes are available at https://github.com/RUC-GSAI/Llama-3-SynE.
pdf
bib
abs
LLMs + Persona-Plug = Personalized LLMs
Jiongnan Liu
|
Yutao Zhu
|
Shuting Wang
|
Xiaochi Wei
|
Erxue Min
|
Yu Lu
|
Shuaiqiang Wang
|
Dawei Yin
|
Zhicheng Dou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their interests. This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences. Some of them involve fine-tuning a unique personalized LLM for each user, which is too expensive for widespread application. Alternative approaches introduce personalization information in a plug-and-play manner by retrieving the user’s relevant historical texts as demonstrations. However, this retrieval-based strategy may break the continuity of the user history and fail to capture the user’s overall styles and patterns, hence leading to sub-optimal performance. To address these challenges, we propose a novel personalized LLM model, PPlug. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module. By attaching this embedding to the task input, LLMs can better understand and capture user habits and preferences, thereby producing more personalized outputs without tuning their parameters. Extensive experiments on various tasks in the language model personalization (LaMP) benchmark demonstrate that the proposed model significantly outperforms existing personalized LLM approaches.
pdf
bib
abs
RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation
Shuting Wang
|
Xin Yu
|
Mang Wang
|
Weipeng Chen
|
Yutao Zhu
|
Zhicheng Dou
Proceedings of the 31st International Conference on Computational Linguistics
Retrieval-augmented generation (RAG) effectively addresses issues of static knowledge and hallucination in large language models. Existing studies mostly focus on question scenarios with clear user intents and concise answers. However, it is prevalent that users issue broad, open-ended queries with diverse sub-intents, for which they desire rich and long-form answers covering multiple relevant aspects. To tackle this important yet underexplored problem, we propose a novel RAG framework, namely RichRAG. It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a multi-faceted retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker, which is a key module to provide the top-k most valuable documents for the final generator. These ranked documents sufficiently cover various query aspects and are aware of the generator’s preferences, hence incentivizing it to produce rich and comprehensive responses for users. The training of our ranker involves a supervised fine-tuning stage to ensure the basic coverage of documents, and a reinforcement learning stage to align downstream LLM’s preferences to the ranking of documents. Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.
pdf
bib
abs
mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data
Haonan Chen
|
Liang Wang
|
Nan Yang
|
Yutao Zhu
|
Ziliang Zhao
|
Furu Wei
|
Zhicheng Dou
Findings of the Association for Computational Linguistics: ACL 2025
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck. In this work, we identify three criteria for high-quality synthetic multimodal data. First, broad scope ensures that the generated data covers diverse tasks and modalities, making it applicable to various downstream scenarios. Second, robust cross-modal alignment makes different modalities semantically consistent. Third, high fidelity ensures that the synthetic data maintains realistic details to enhance its reliability. Guided by these principles, we synthesize datasets that: (1) cover a wide range of tasks, modality combinations, and languages, (2) are generated via a deep thinking process within a single pass of a multimodal large language model, and (3) incorporate real-world images with accurate and relevant texts, ensuring fidelity through self-evaluation and refinement. Leveraging these high-quality synthetic and labeled datasets, we train a multimodal multilingual E5 model mmE5. Extensive experiments demonstrate that mmE5 achieves state-of-the-art performance on the MMEB Benchmark and superior multilingual performance on the XTD benchmark. Our codes, datasets, and models are released in https://github.com/haon-chen/mmE5.
pdf
bib
abs
Little Giants: Synthesizing High-Quality Embedding Data at Scale
Haonan Chen
|
Liang Wang
|
Nan Yang
|
Yutao Zhu
|
Ziliang Zhao
|
Furu Wei
|
Zhicheng Dou
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Synthetic data generation has become an increasingly popular way of training models without the need for large, manually labeled datasets. For tasks like text embedding, synthetic data offers diverse and scalable training examples, significantly reducing the cost of human annotation. However, most current approaches rely heavily on proprietary models like GPT-4, which are expensive and inefficient for generating large-scale embedding data. In this paper, we introduce SPEED, a framework that aligns open-source small models (8B) to efficiently generate large-scale synthetic embedding data. Through supervised fine-tuning, preference optimization, and self-improvement, SPEED enables small open-source models to produce high-quality data. Remarkably, SPEED uses only less than 1/10 of the GPT API calls, outperforming the state-of-the-art embedding model E5_mistral when both are trained solely on their synthetic data. Using this efficient generator, we conduct a comprehensive study on how various factors within the alignment pipeline impact data quality and reveal the scaling law for synthetic embedding data. Our codes and models are released in https://github.com/haon-chen/SPEED.
2024
pdf
bib
abs
INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning
Yutao Zhu
|
Peitian Zhang
|
Chenghao Zhang
|
Yifei Chen
|
Binyu Xie
|
Zheng Liu
|
Ji-Rong Wen
|
Zhicheng Dou
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks. Despite this, their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language. While prompt-based methods can provide task descriptions to LLMs, they often fall short in facilitating a comprehensive understanding and execution of IR tasks, thereby limiting LLMs’ applicability. To address this gap, in this work, we explore the potential of instruction tuning to enhance LLMs’ proficiency in IR tasks. We introduce a novel instruction tuning dataset, INTERS, encompassing 20 tasks across three fundamental IR categories: query understanding, document understanding, and query-document relationship understanding. The data are derived from 43 distinct datasets with manually written templates. Our empirical results reveal that INTERS significantly boosts the performance of various publicly available LLMs, such as LLaMA, Mistral, and Falcon, in IR tasks. Furthermore, we conduct extensive experiments to analyze the effects of instruction design, template diversity, few-shot demonstrations, and the volume of instructions on performance. We make our dataset and the fine-tuned models publicly accessible at https://github.com/DaoD/INTERS.
pdf
bib
abs
Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs
Jiejun Tan
|
Zhicheng Dou
|
Yutao Zhu
|
Peidong Guo
|
Kun Fang
|
Ji-Rong Wen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The integration of large language models (LLMs) and search engines represents a significant evolution in knowledge acquisition methodologies. However, determining the knowledge that an LLM already possesses and the knowledge that requires the help of a search engine remains an unresolved issue. Most existing methods solve this problem through the results of preliminary answers or reasoning done by the LLM itself, but this incurs excessively high computational costs. This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in LLMs with a slim proxy model, to enhance the LLM’s knowledge acquisition process. We employ a proxy model which has far fewer parameters, and take its answers as heuristic answers. Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM. We only conduct retrieval for the missing knowledge in questions that the LLM does not know. Extensive experimental results on five datasets with two LLMs demonstrate a notable improvement in the end-to-end performance of LLMs in question-answering tasks, achieving or surpassing current state-of-the-art models with lower LLM inference costs.
pdf
bib
abs
BIDER: Bridging Knowledge Inconsistency for Efficient Retrieval-Augmented LLMs via Key Supporting Evidence
Jiajie Jin
|
Yutao Zhu
|
Yujia Zhou
|
Zhicheng Dou
Findings of the Association for Computational Linguistics: ACL 2024
Retrieval-augmented large language models (LLMs) have demonstrated efficacy in knowledge-intensive tasks such as open-domain QA, addressing inherent challenges in knowledge update and factual inadequacy.However, inconsistencies between retrieval knowledge and the necessary knowledge for LLMs, leading to a decline in LLM’s answer quality. This paper introduces BIDER, an approach that refines retrieval documents into Key Supporting Evidence (KSE) through knowledge synthesis, supervised fine-tuning (SFT), and preference alignment. We train BIDER by learning from crafting KSE, while maximizing its output to align with LLM’s information acquisition preferences through reinforcement learning. Evaluations across five datasets show BIDER boosts LLMs’ answer quality by 7% while reducing input content length in retrieval documents by 80%, outperforming existing methods. The proposed KSE simulation effectively equips LLMs with essential information for accurate question answering.
2023
pdf
bib
abs
ConvGQR: Generative Query Reformulation for Conversational Search
Fengran Mo
|
Kelong Mao
|
Yutao Zhu
|
Yihong Wu
|
Kaiyu Huang
|
Jian-Yun Nie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In conversational search, the user’s real search intent for the current conversation turn is dependent on the previous conversation history. It is challenging to determine a good search query from the whole conversation context. To avoid the expensive re-training of the query encoder, most existing methods try to learn a rewriting model to de-contextualize the current query by mimicking the manual query rewriting. However, manually rewritten queries are not always the best search queries. Thus, training a rewriting model on them would lead to sub-optimal queries. Another useful information to enhance the search query is the potential answer to the question. In this paper, we propose ConvGQR, a new framework to reformulate conversational queries based on generative pre-trained language models (PLMs), one for query rewriting and another for generating potential answers. By combining both, ConvGQR can produce better search queries. In addition, to relate query reformulation to the retrieval task, we propose a knowledge infusion mechanism to optimize both query reformulation and retrieval. Extensive experiments on four conversational search datasets demonstrate the effectiveness of ConvGQR.
pdf
bib
abs
Hence, Socrates is mortal: A Benchmark for Natural Language Syllogistic Reasoning
Yongkang Wu
|
Meng Han
|
Yutao Zhu
|
Lei Li
|
Xinyu Zhang
|
Ruofei Lai
|
Xiaoguang Li
|
Yuanhang Ren
|
Zhicheng Dou
|
Zhao Cao
Findings of the Association for Computational Linguistics: ACL 2023
Syllogistic reasoning, a typical form of deductive reasoning, is a critical capability widely required in natural language understanding tasks, such as text entailment and question answering. To better facilitate research on syllogistic reasoning, we develop a benchmark called SylloBase that differs from existing syllogistic datasets in three aspects: (1) Covering a complete taxonomy of syllogism reasoning patterns; (2) Containing both automatically and manually constructed samples; and (3) Involving both the generation and understanding tasks. We automatically construct 50k template-based syllogism samples by mining syllogism patterns from Wikidata and ConceptNet. To improve our dataset’s naturalness and challenge, we apply GPT-3 to paraphrase the template-based data and further manually rewrite 1,000 samples as the test set. State-of-the-art pre-trained language models can achieve the best generation ROUGE-L of 38.72 by T5 and the best multi-choice accuracy of 72.77% by RoBERTa on SylloBase, which indicates the great challenge of learning diverse syllogistic reasoning types on SylloBase. Our datasets are released at
https://github.com/casually-PYlearner/SYLLOBASE.
pdf
bib
abs
Joint Semantic and Strategy Matching for Persuasive Dialogue
Chuhao Jin
|
Yutao Zhu
|
Lingzhen Kong
|
Shijie Li
|
Xiao Zhang
|
Ruihua Song
|
Xu Chen
|
Huan Chen
|
Yuchong Sun
|
Yu Chen
|
Jun Xu
Findings of the Association for Computational Linguistics: EMNLP 2023
Persuasive dialogue aims to persuade users to achieve some targets by conversations. While previous persuasion models have achieved notable successes, they mostly base themselves on utterance semantic matching, and an important aspect has been ignored, that is, the strategy of the conversations, for example, the agent can choose an emotional-appeal strategy to impress users. Compared with utterance semantics, conversation strategies are high-level concepts, which can be informative and provide complementary information to achieve effective persuasions. In this paper, we propose to build a persuasion model by jointly modeling the conversation semantics and strategies, where we design a BERT-like module and an auto-regressive predictor to match the semantics and strategies, respectively. Experimental results indicate that our proposed approach can significantly improve the state-of-the-art baseline by 5% on a small dataset and 37% on a large dataset in terms of Recall@1. Detailed analyses show that the auto-regressive predictor contributes most to the final performance.
2022
pdf
bib
abs
Coarse-to-Fine: Hierarchical Multi-task Learning for Natural Language Understanding
Zhaoye Fei
|
Yu Tian
|
Yongkang Wu
|
Xinyu Zhang
|
Yutao Zhu
|
Zheng Liu
|
Jiawen Wu
|
Dejiang Kong
|
Ruofei Lai
|
Zhao Cao
|
Zhicheng Dou
|
Xipeng Qiu
Proceedings of the 29th International Conference on Computational Linguistics
Generalized text representations are the foundation of many natural language understanding tasks. To fully utilize the different corpus, it is inevitable that models need to understand the relevance among them. However, many methods ignore the relevance and adopt a single-channel model (a coarse paradigm) directly for all tasks, which lacks enough rationality and interpretation. In addition, some existing works learn downstream tasks by stitches skill block (a fine paradigm), which might cause irrational results due to its redundancy and noise. In this work, we first analyze the task correlation through three different perspectives, , data property, manual design, and model-based relevance, based on which the similar tasks are grouped together. Then, we propose a hierarchical framework with a coarse-to-fine paradigm, with the bottom level shared to all the tasks, the mid-level divided to different groups, and the top-level assigned to each of the tasks. This allows our model to learn basic language properties from all tasks, boost performance on relevant tasks, and reduce the negative impact from irrelevant tasks. Our experiments on 13 benchmark datasets across five natural language understanding tasks demonstrate the superiority of our method.
pdf
bib
abs
MCP: Self-supervised Pre-training for Personalized Chatbots with Multi-level Contrastive Sampling
Zhaoheng Huang
|
Zhicheng Dou
|
Yutao Zhu
|
Zhengyi Ma
Findings of the Association for Computational Linguistics: EMNLP 2022
Personalized chatbots focus on endowing the chatbots with a consistent personality to behave like real users and further act as personal assistants. Previous studies have explored generating implicit user profiles from the user’s dialogue history for building personalized chatbots. However, these studies only use the response generation loss to train the entire model, thus it is prone to suffer from the problem of data sparsity. Besides, they overemphasize the final generated response’s quality while ignoring the correlations and fusions between the user’s dialogue history, leading to rough data representations and performance degradation. To tackle these problems, we propose a self-supervised learning framework MCP for capturing better representations from users’ dialogue history for personalized chatbots. Specifically, we apply contrastive sampling methods to leverage the supervised signals hidden in user dialog history, and generate the pre-training samples for enhancing the model. We design three pre-training tasks based on three types of contrastive pairs from user dialogue history, namely response pairs, sequence augmentation pairs, and user pairs. We pre-train the utterance encoder and the history encoder towards the contrastive objectives and use these pre-trained encoders for generating user profiles while personalized response generation. Experimental results on two real-world datasets show a significant improvement in our proposed model MCP compared with the existing methods.
pdf
bib
abs
Less is More: Learning to Refine Dialogue History for Personalized Dialogue Generation
Hanxun Zhong
|
Zhicheng Dou
|
Yutao Zhu
|
Hongjin Qian
|
Ji-Rong Wen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Personalized dialogue systems explore the problem of generating responses that are consistent with the user’s personality, which has raised much attention in recent years. Existing personalized dialogue systems have tried to extract user profiles from dialogue history to guide personalized response generation. Since the dialogue history is usually long and noisy, most existing methods truncate the dialogue history to model the user’s personality. Such methods can generate some personalized responses, but a large part of dialogue history is wasted, leading to sub-optimal performance of personalized response generation. In this work, we propose to refine the user dialogue history on a large scale, based on which we can handle more dialogue history and obtain more abundant and accurate persona information. Specifically, we design an MSP model which consists of three personal information refiners and a personalized response generator. With these multi-level refiners, we can sparsely extract the most valuable information (tokens) from the dialogue history and leverage other similar users’ data to enhance personalization. Experimental results on two real-world datasets demonstrate the superiority of our model in generating more informative and personalized responses.
2021
pdf
bib
abs
基于双星型自注意力网络的搜索结果多样化方法(Search Result Diversification Framework Based on Dual Star-shaped Self-Attention Network)
Xubo Qin (秦绪博)
|
Zhicheng Dou (窦志成)
|
Yutao Zhu (朱余韬)
|
Jirong Wen (文继荣)
Proceedings of the 20th Chinese National Conference on Computational Linguistics
相关研究指出,用户提交给搜索引擎的查询通常为短查询。由于自然语言本身的特点,短查询通常具有歧义性,同一个查询可以指代不同的事物,或同一事物的不同方面。为了让搜索结果尽可能满足用户多样化的信息需求,搜索引擎需要对返回的结果进行多样化排序,搜索结果多样化技术应运而生。目前已有的基于全局交互的多样化方法通过全连接的自注意力网络捕获全体候选文档间的交互关系,取得了较好的效果。但由于此类方法只考虑文档间的相关关系,并没有考虑到文档是否具有跟查询相关的有效信息,在训练数据有限的条件下效率相对较低。该文提出了一种基于双星型自注意力网络的搜索结果多样化方法,将全连接结构改为星型拓扑结构,并嵌入查询信息以高效率地提取文档跟查询相关的全局交互特征。相关实验结果显示,该模型相对于基于全连接自注意力网络的多样化方法,具备显著的性能优势。
2020
pdf
bib
abs
ScriptWriter: Narrative-Guided Script Generation
Yutao Zhu
|
Ruihua Song
|
Zhicheng Dou
|
Jian-Yun Nie
|
Jin Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
It is appealing to have a system that generates a story or scripts automatically from a storyline, even though this is still out of our reach. In dialogue systems, it would also be useful to drive dialogues by a dialogue plan. In this paper, we address a key problem involved in these applications - guiding a dialogue by a narrative. The proposed model ScriptWriter selects the best response among the candidates that fit the context as well as the given narrative. It keeps track of what in the narrative has been said and what is to be said. A narrative plays a different role than the context (i.e., previous utterances), which is generally used in current dialogue systems. Due to the unavailability of data for this new application, we construct a new large-scale data collection GraphMovie from a movie website where end- users can upload their narratives freely when watching a movie. Experimental results on the dataset show that our proposed approach based on narratives significantly outperforms the baselines that simply use the narrative as a kind of context.