Yue Dai


2025

pdf bib
ChuLo: Chunk-Level Key Information Representation for Long Document Understanding
Yan Li | Caren Han | Yue Dai | Feiqi Cao
Findings of the Association for Computational Linguistics: ACL 2025

Transformer-based models have achieved remarkable success in various Natural Language Processing (NLP) tasks, yet their ability to handle long documents is constrained by computational limitations. Traditional approaches, such as truncating inputs, sparse self-attention, and chunking, attempt to mitigate these issues, but they often lead to information loss and hinder the model’s ability to capture long-range dependencies. In this paper, we introduce ChuLo, a novel chunk representation method for long document understanding that addresses these limitations. Our ChuLo groups input tokens using unsupervised keyphrase extraction, emphasizing semantically important keyphrase based chunks to retain core document content while reducing input length. This approach minimizes information loss and improves the efficiency of Transformer-based models. Preserving all tokens in long document understanding, especially token classification tasks, is important to ensure that fine-grained annotations, which depend on the entire sequence context, are not lost. We evaluate our method on multiple long document classification tasks and long document token classification tasks, demonstrating its effectiveness through comprehensive qualitative and quantitative analysis.

2022

pdf bib
ImageArg: A Multi-modal Tweet Dataset for Image Persuasiveness Mining
Zhexiong Liu | Meiqi Guo | Yue Dai | Diane Litman
Proceedings of the 9th Workshop on Argument Mining

The growing interest in developing corpora of persuasive texts has promoted applications in automated systems, e.g., debating and essay scoring systems; however, there is little prior work mining image persuasiveness from an argumentative perspective. To expand persuasiveness mining into a multi-modal realm, we present a multi-modal dataset, ImageArg, consisting of annotations of image persuasiveness in tweets. The annotations are based on a persuasion taxonomy we developed to explore image functionalities and the means of persuasion. We benchmark image persuasiveness tasks on ImageArg using widely-used multi-modal learning methods. The experimental results show that our dataset offers a useful resource for this rich and challenging topic, and there is ample room for modeling improvement.