2025
pdf
bib
abs
Semantic-Eval : A Semantic Comprehension Evaluation Framework for Large Language Models Generation without Training
Shusheng Li
|
Jiale Li
|
Yifei Qu
|
Xinwei Shi
|
Yanliang Guo
|
Ziyi He
|
Yubo Wang
|
Wenjun Tan
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
With the increasing prominence of large language models (LLMs), evaluating their text-generation capabilities has become an essential research challenge. Although LLM-based evaluation methods exhibit robust performance, the inherent stochastic nature of the LLM generation process introduces a degree of uncertainty in alignment with human preferences. To address this limitation, we propose Semantic-Eval, the first training-free framework designed to assess LLM-generated text based on semantic understanding. This framework computes semantic similarity between pairwise texts to evaluate the interdependence of semantic units, integrating a graph-based weighting mechanism to account for the differential contributions of individual sentences. A pre-trained natural language inference (NLI) model is also incorporated to mitigate potential semantic relationship biases. We evaluate Semantic-Eval across eight datasets that encompass four common NLP tasks. The experimental results indicate that Semantic-Eval surpasses traditional N-gram and BERT-based evaluation metrics, aligning more closely with human judgments and demonstrating a higher correlation than smaller LLMs. However, it slightly lags behind GPT-4. Finally, we demonstrate the effectiveness of Semantic-Eval in evaluating the generation quality of 13 large language models. The code is publicly available at https://github.com/LssTry/Semantic-Eval.
pdf
bib
abs
MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale
Jiawei Guo
|
Tianyu Zheng
|
Yizhi Li
|
Yuelin Bai
|
Bo Li
|
Yubo Wang
|
King Zhu
|
Graham Neubig
|
Wenhu Chen
|
Xiang Yue
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Open-source multimodal large language models (MLLMs) have shown significant potential in a broad range of tasks. However, their reasoning capabilities remain constrained by existing instruction-tuning datasets, which were predominately repurposed from academic datasets such as VQA, AI2D, and ChartQA. These datasets target simplistic tasks, and only provide phrase-level answers without any intermediate rationales.To address these challenges, we introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales designed to elicit CoT reasoning. Using only open models, we create a dataset containing 12M instruction-response pairs to cover diverse reasoning-intensive tasks.Experiments demonstrate that training MLLMs on our dataset not only significantly improves reasoning capabilities, achieving state-of-the-art performance on benchmarks such as MathVerse (+8.1%), MMMU-Pro (+7%), and MuirBench (+13.3%), but also gains improvements of up to 4% on non-reasoning-based benchmarks.
pdf
bib
abs
MMMU-Pro: A More Robust Multi-discipline Multimodal Understanding Benchmark
Xiang Yue
|
Tianyu Zheng
|
Yuansheng Ni
|
Yubo Wang
|
Kai Zhang
|
Shengbang Tong
|
Yuxuan Sun
|
Botao Yu
|
Ge Zhang
|
Huan Sun
|
Yu Su
|
Wenhu Chen
|
Graham Neubig
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
This paper introduces MMMU-Pro, a robust version of the Massive Multi-discipline Multimodal Understanding and Reasoning (MMMU) benchmark. MMMU-Pro rigorously assesses multimodal models’ true understanding and reasoning capabilities through a three-step process based on MMMU: (1) filtering out questions answerable by text-only models, (2) augmenting candidate options, and (3) introducing a vision-only input setting where questions are embedded within images. This setting challenges AI to truly “see” and “read” simultaneously, testing a core human cognitive skill of seamlessly integrating visual and textual information. Results show that model performance is substantially lower on MMMU-Pro than on MMMU, ranging from 16.8% to 26.9% across models. We explore the impact of OCR prompts and Chain of Thought (CoT) reasoning, finding that OCR prompts have minimal effect while CoT generally improves performance. MMMU-Pro provides a more rigorous evaluation tool, closely mimicking real-world scenarios and offering valuable directions for future multimodal research.
2024
pdf
bib
abs
Augmenting Black-box LLMs with Medical Textbooks for Biomedical Question Answering
Yubo Wang
|
Xueguang Ma
|
Wenhu Chen
Findings of the Association for Computational Linguistics: EMNLP 2024
Large-scale language models (LLMs) like ChatGPT have demonstrated impressive abilities in generating responses based on human instructions. However, their use in the medical field can be challenging due to their lack of specific, in-depth knowledge. In this study, we present a system called LLMs Augmented with Medical Textbooks (LLM-AMT) designed to enhance the proficiency of LLMs in specialized domains. LLM-AMT integrates authoritative medical textbooks into the LLMs’ framework using plug-and-play modules. These modules include a Query Augmenter, a Hybrid Textbook Retriever, and a Knowledge Self-Refiner. Together, they incorporate authoritative medical knowledge. Additionally, an LLM Reader aids in contextual understanding. Our experimental results on three medical QA tasks demonstrate that LLM-AMT significantly improves response quality, with accuracy gains ranging from 11.6% to 16.6%. Notably, with GPT-4-Turbo as the base model, LLM-AMT outperforms the specialized Med-PaLM 2 model pre-trained on a massive amount of medical corpus by 2-3%. We found that despite being 100 smaller in size, medical textbooks as a retrieval corpus are proven to be a more effective knowledge database than Wikipedia in the medical domain, boosting performance by 7.8%-13.7%.