Yirong Chen


2025

pdf bib
PsyDT: Using LLMs to Construct the Digital Twin of Psychological Counselor with Personalized Counseling Style for Psychological Counseling
Haojie Xie | Yirong Chen | Xiaofen Xing | Jingkai Lin | Xiangmin Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Currently, large language models (LLMs) have made significant progress in the field of psychological counseling. However, existing mental health LLMs overlook a critical issue where they do not consider the fact that different psychological counselors exhibit different personal styles, including linguistic style and therapy techniques, etc. As a result, these LLMs fail to satisfy the individual needs of clients who seek different counseling styles. To help bridge this gap, we propose PsyDT, a novel framework using LLMs to construct the Digital Twin of Psychological counselor with personalized counseling style. Compared to the time-consuming and costly approach of collecting a large number of real-world counseling cases to create a specific counselor’s digital twin, our framework offers a faster and more cost-effective solution. To construct PsyDT, we utilize dynamic one-shot learning by using GPT-4 to capture counselor’s unique counseling style, mainly focusing on linguistic style and therapy techniques. Subsequently, using existing single-turn long-text dialogues with client’s questions, GPT-4 is guided to synthesize multi-turn dialogues of specific counselor. Finally, we fine-tune the LLMs on the synthetic dataset, PsyDTCorpus, to achieve the digital twin of psychological counselor with personalized counseling style. Experimental results indicate that our proposed PsyDT framework can synthesize multi-turn dialogues that closely resemble real-world counseling cases and demonstrate better performance compared to other baselines, thereby show that our framework can effectively construct the digital twin of psychological counselor with a specific counseling style.

pdf bib
TreeRAG: Unleashing the Power of Hierarchical Storage for Enhanced Knowledge Retrieval in Long Documents
Wenyu Tao | Xiaofen Xing | Yirong Chen | Linyi Huang | Xiangmin Xu
Findings of the Association for Computational Linguistics: ACL 2025

When confronting long document information retrieval for Query-Focused Summarization(QFS), Traditional Retrieval-Augmented Generation(RAG) frameworks struggle to retrieve all relevant knowledge points, and the chunking and retrieve strategies of existing frameworks may disrupt the connections between knowledge points and the integrity of the information. To address these issues, we propose TreeRAG, which employs Tree-Chunking for chunking and embedding in a tree-like structure , coupled with "root-to-leaves" and "leaf-to-root" retrieve strategy named Bidirectional Traversal Retrieval. This approach effectively preserves the hierarchical structure among knowledge points and significantly enhances the ability to retrieve while minimizing noise inference. Our experimental results on the Finance, Law, and Medical subsets of the Dragonball dataset demonstrate that TreeRAG achieves significant enhancements in both recall quality and precision compared to traditional and popular existing methods and achieves better performance to corresponding question-answering tasks, marking a new breakthrough in long document knowledge retrieval.

2023

pdf bib
Exploring Prompt-based Multi-task Learning for Multimodal Dialog State Tracking and Immersive Multimodal Conversation
Yirong Chen | Ya Li | Tao Wang | Xiaofen Xing | Xiangmin Xu | Quan Liu | Cong Liu | Guoping Hu
Proceedings of the Eleventh Dialog System Technology Challenge

With the rise of the metaverse, immersive multimodal conversation has attracted more and more researchers’ attention. Multimodal contexts will become more important for human-computer interaction in the metaverse, especially in shopping domain. Unlike traditional conversation tasks, immersive multimodal conversation has challenges such as multimodal ambiguous candidate identification and multimodal coreference resolution, which makes it more difficult to dialog state tracking and response generation, as described in SIMMC 2.1 challenge, a part of DSTC11. In particular, as the number of objects in the scene increases, the difficulty will increase dramatically. We proposed a prompt-based multi-task learning Encoder-Decoder, in which different subtasks use different prompts to make the model tend to focus on the current subtask. We achieve the winner in ambiguous candidates indentification and runner-up in multimodal coreference resolution (MM-Coref), multimodal dialog state tracking (MM-DST) and assistant response generation. Our code and model are made publicly available at https://github.com/scutcyr/dstc11-simmc2.1-scut-bds-lab.

pdf bib
SoulChat: Improving LLMs’ Empathy, Listening, and Comfort Abilities through Fine-tuning with Multi-turn Empathy Conversations
Yirong Chen | Xiaofen Xing | Jingkai Lin | Huimin Zheng | Zhenyu Wang | Qi Liu | Xiangmin Xu
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) have been widely applied in various fields due to their excellent capability for memorizing knowledge and chain of thought (CoT). When these language models are applied in the field of psychological counseling, they often rush to provide universal advice. However, when users seek psychological support, they need to gain empathy, trust, understanding and comfort, rather than just reasonable advice. To this end, we constructed a multi-turn empathetic conversation dataset of more than 2 million samples, in which the input is the multi-turn conversation context, and the target is empathetic responses that cover expressions such as questioning, comfort, recognition, listening, trust, emotional support, etc. Experiments have shown that the empathy ability of LLMs can be significantly enhanced when finetuning by using multi-turn dialogue history and responses that are closer to the expression of a psychological consultant.

2022

pdf bib
Modeling Compositionality with Dependency Graph for Dialogue Generation
Xiaofeng Chen | Yirong Chen | Xiaofen Xing | Xiangmin Xu | Wenjing Han | Qianfeng Tie
Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI)

Because of the compositionality of natural language, syntactic structure which contains the information about the relationship between words is a key factor for semantic understanding. However, the widely adopted Transformer is hard to learn the syntactic structure effectively in dialogue generation tasks. To explicitly model the compositionaity of language in Transformer Block, we restrict the information flow between words by constructing directed dependency graph and propose Dependency Relation Attention (DRA). Experimental results demonstrate that DRA can further improve the performance of state-of-the-art models for dialogue generation.

2008

pdf bib
Chinese Core Ontology Construction from a Bilingual Term Bank
Yirong Chen | Qin Lu | Wenjie Li | Gaoying Cui
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

A core ontology is a mid-level ontology which bridges the gap between an upper ontology and a domain ontology. Automatic Chinese core ontology construction can help quickly model domain knowledge. A graph based core ontology construction algorithm (COCA) is proposed to automatically construct a core ontology from an English-Chinese bilingual term bank. This algorithm computes the mapping strength from a selected Chinese term to WordNet synset with association to an upper-level SUMO concept. The strength is measured using a graph model integrated with several mapping features from multiple information sources. The features include multiple translation feature between Chinese core term and WordNet, extended string feature and Part-of-Speech feature. Evaluation of COCA repeated on an English-Chinese bilingual Term bank with more than 130K entries shows that the algorithm is improved in performance compared with our previous research and can better serve the semi-automatic construction of mid-level ontology.

pdf bib
Corpus Exploitation from Wikipedia for Ontology Construction
Gaoying Cui | Qin Lu | Wenjie Li | Yirong Chen
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

Ontology construction usually requires a domain-specific corpus for building corresponding concept hierarchy. The domain corpus must have a good coverage of domain knowledge. Wikipedia(Wiki), the world’s largest online encyclopaedic knowledge source, is open-content, collaboratively edited, and free of charge. It covers millions of articles and still keeps on expanding continuously. These characteristics make Wiki a good candidate as domain corpus resource in ontology construction. However, the selected article collection must have considerable quality and quantity. In this paper, a novel approach is proposed to identify articles in Wiki as domain-specific corpus by using available classification information in Wiki pages. The main idea is to generate a domain hierarchy from the hyperlinked pages of Wiki. Only articles strongly linked to this hierarchy are selected as the domain corpus. The proposed approach makes use of linked category information in Wiki pages to produce the hierarchy as a directed graph for obtaining a set of pages in the same connected branch. Ranking and filtering are then done on these pages based on the classification tree generated by the traversal algorithm. The experiment and evaluation results show that Wiki is a good resource for acquiring a relative high quality domain-specific corpus for ontology construction.

2006

pdf bib
A Study on Terminology Extraction Based on Classified Corpora
Yirong Chen | Qin Lu | Wenjie Li | Zhifang Sui | Luning Ji
Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)

Algorithms for automatic term extraction in a specific domain should consider at least two issues, namely Unithood and Termhood (Kageura, 1996). Unithood refers to the degree of a string to occur as a word or a phrase. Termhood (Chen Yirong, 2005) refers to the degree of a word or a phrase to occur as a domain specific concept. Unlike unithood, study on termhood is not yet widely reported. In classified corpora, the class information provides the cue to the nature of data and can be used in termhood calculation. Three algorithms are provided and evaluated to investigate termhood based on classified corpora. The three algorithms are based on lexicon set computing, term frequency and document frequency, and the strength of the relation between a term and its document class respectively. Our objective is to investigate the effects of these different termhood measurement features. After evaluation, we can find which features are more effective and also, how we can improve these different features to achieve the best performance. Preliminary results show that the first measure can effectively filter out independent terms or terms of general use.