2025
pdf
bib
abs
Advancing Collaborative Debates with Role Differentiation through Multi-Agent Reinforcement Learning
Haoran Li
|
Ziyi Su
|
Yun Xue
|
Zhiliang Tian
|
Yiping Song
|
Minlie Huang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multi-agent collaborative tasks exhibit exceptional capabilities in natural language applications and generation. By prompting agents to assign clear roles, it is possible to facilitate cooperation and achieve complementary capabilities among LLMs. A common strategy involves adopting a relatively general role assignment mechanism, such as introducing a “judge” or a “summarizer”. However, these approaches lack task-specific role customization based on task characteristics. Another strategy involves decomposing the task based on domain knowledge and task characteristics, followed by assigning appropriate roles according to LLMs’ respective strengths, such as programmers and testers. However, in some given tasks, obtaining domain knowledge related to task characteristics and getting the strengths of different LLMs is hard. To solve these problems, we propose a Multi-LLM Cooperation (MLC) framework with automatic role assignment capabilities. The core idea of the MLC is to initialize role assignments randomly and then allow the role embeddings to be learned jointly with the downstream task. To capture the state transitions of multiple LLMs during turn-based speaking, the role embedding is sequence-aware. At the same time, to avoid role convergence, the role differentiation module in MLC encourages behavioral differentiation between LLMs while ensuring the LLM team consistency, guiding different LLMs to develop complementary strengths from the optimization level. Our experiments on seven datasets demonstrate that MLC significantly enhances collaboration and expertise, which collaboratively addresses multi-agent tasks.
pdf
bib
abs
MSG-LLM: A Multi-scale Interactive Framework for Graph-enhanced Large Language Models
Jiayu Ding
|
Zhangkai Zheng
|
Benshuo Lin
|
Yun Xue
|
Yiping Song
Proceedings of the 31st International Conference on Computational Linguistics
Graph-enhanced large language models (LLMs) leverage LLMs’ remarkable ability to model language and use graph structures to capture topological relationships. Existing graph-enhanced LLMs typically retrieve similar subgraphs to augment LLMs, where the subgraphs carry the entities related to our target and relations among the entities. However, the retrieving methods mainly focus solely on accurately matching subgraphs between our target subgraph and the candidate subgraphs at the same scale, neglecting that the subgraphs with different scales may also share similar semantics or structures. To tackle this challenge, we introduce a graph-enhanced LLM with multi-scale retrieval (MSG-LLM). It captures similar graph structures and semantics across graphs at different scales and bridges the graph alignment across multiple scales. The larger scales maintain the graph’s global information, while the smaller scales preserve the details of fine-grained sub-structures. Specifically, we construct a multi-scale variation to dynamically shrink the scale of graphs. Further, we employ a graph kernel search to discover subgraphs from the entire graph, which essentially achieves multi-scale graph retrieval in Hilbert space. Additionally, we propose to conduct multi-scale interactions (message passing) over graphs at various scales to integrate key information. The interaction also bridges the graph and LLMs, helping with graph retrieval and LLM generation. Finally, we employ a Chain-of-Thought-based LLM prediction to perform the downstream tasks. We evaluate our approach on two graph-based downstream tasks and the experimental results show that our method achieves state-of-the-art performance.
pdf
bib
abs
DPGA-TextSyn: Differentially Private Genetic Algorithm for Synthetic Text Generation
Zhonghao Sun
|
Zhiliang Tian
|
Yiping Song
|
Yuyi Si
|
Juhua Zhang
|
Minlie Huang
|
Kai Lu
|
Zeyu Xiong
|
Xinwang Liu
|
Dongsheng Li
Findings of the Association for Computational Linguistics: ACL 2025
Using large language models (LLMs) has a potential risk of privacy leakage since the data with sensitive information may be used for fine-tuning the LLMs. Differential privacy (DP) provides theoretical guarantees of privacy protection, but its practical application in LLMs still has the problem of privacy-utility trade-off. Researchers synthesized data with strong generation capabilities closed-source LLMs (i.e., GPT-4) under DP to alleviate this problem, but this method is not so flexible in fitting the given privacy distributions without fine-tuning. Besides, such methods can hardly balance the diversity of synthetic data and its relevance to target privacy data without accessing so much private data. To this end, this paper proposes DPGA-TextSyn, combining general LLMs with genetic algorithm (GA) to produce relevant and diverse synthetic text under DP constraints. First, we integrate the privacy gene (i.e., metadata) to generate better initial samples. Then, to achieve survival of the fittest and avoid homogeneity, we use privacy nearest neighbor voting and similarity suppression to select elite samples. In addition, we expand elite samples via genetic strategies such as mutation, crossover, and generation to expand the search scope of GA. Experiments show that this method significantly improves the performance of the model in downstream tasks while ensuring privacy.
pdf
bib
abs
DYNTEXT: Semantic-Aware Dynamic Text Sanitization for Privacy-Preserving LLM Inference
Juhua Zhang
|
Zhiliang Tian
|
Minghang Zhu
|
Yiping Song
|
Taishu Sheng
|
Siyi Yang
|
Qiunan Du
|
Xinwang Liu
|
Minlie Huang
|
Dongsheng Li
Findings of the Association for Computational Linguistics: ACL 2025
LLMs face privacy risks when handling sensitive data. To ensure privacy, researchers use differential privacy (DP) to provide protection by adding noise during LLM training. However, users may be hesitant to share complete data with LLMs. Researchers follow local DP to sanitize the text on the user side and feed non-sensitive text to LLMs. The sanitization usually uses a fixed non-sensitive token list or a fixed noise distribution, which induces the risk of being attacked or semantic distortion. We argue that the token’s protection level should be adaptively adjusted according to its semantic-based information to balance the privacy-utility trade-off. In this paper, we propose DYNTEXT, an LDP-based Dynamic Text sanitization for privacy-preserving LLM inference, which dynamically constructs semantic-aware adjacency lists of sensitive tokens to sample non-sensitive tokens for perturbation. Specifically, DYNTEXT first develops a semantic-based density modeling under DP to extract each token’s density information. We propose token-level smoothing sensitivity by combining the idea of global sensitivity (GS) and local sensitivity (LS), which dynamically adjusts the noise scale to avoid excessive noise in GS and privacy leakage in LS. Then, we dynamically construct an adjacency list for each sensitive token based on its semantic density information. Finally, we apply the replacement mechanism to sample non-sensitive, semantically similar tokens from the adjacency list to replace sensitive tokens. Experiments show that DYNTEXT excels strong baselines on three datasets.
2024
pdf
bib
abs
Context-aware Watermark with Semantic Balanced Green-red Lists for Large Language Models
Yuxuan Guo
|
Zhiliang Tian
|
Yiping Song
|
Tianlun Liu
|
Liang Ding
|
Dongsheng Li
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Watermarking enables people to determine whether the text is generated by a specific model. It injects a unique signature based on the “green-red” list that can be tracked during detection, where the words in green lists are encouraged to be generated. Recent researchers propose to fix the green/red lists or increase the proportion of green tokens to defend against paraphrasing attacks. However, these methods cause degradation of text quality due to semantic disparities between the watermarked text and the unwatermarked text. In this paper, we propose a semantic-aware watermark method that considers contexts to generate a semantic-aware key to split a semantically balanced green/red list for watermark injection. The semantic balanced list reduces the performance drop due to adding bias on green lists. To defend against paraphrasing attacks, we generate the watermark key considering the semantics of contexts via locally sensitive hashing. To improve the text quality, we propose to split green/red lists considering semantics to enable the green list to cover almost all semantics. We also dynamically adapt the bias to balance text quality and robustness. The experiments show our advantages in both robustness and text quality comparable to existing baselines.
pdf
bib
abs
StyleFlow: Disentangle Latent Representations via Normalizing Flow for Unsupervised Text Style Transfer
Kangchen Zhu
|
Zhiliang Tian
|
Jingyu Wei
|
Ruifeng Luo
|
Yiping Song
|
Xiaoguang Mao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Unsupervised text style transfer aims to modify the style of a sentence while preserving its content without parallel corpora. Existing approaches attempt to separate content from style, but some words contain both content and style information. It makes them difficult to disentangle, where unsatisfactory disentanglement results in the loss of the content information or the target style. To address this issue, researchers adopted a “cycle reconstruction” mechanism to maintain content information, but it is still hard to achieve satisfactory content preservation due to incomplete disentanglement. In this paper, we propose a new disentanglement-based method, StyleFlow, which effectively avoids the loss of contents through a better cycle reconstruction via a reversible encoder. The reversible encoder is a normalizing flow that can not only produce output given input but also infer the exact input given the output reversely. We design a stack of attention-aware coupling layers, where each layer is reversible and adopts the attention mechanism to improve the content-style disentanglement. Moreover, we propose a data augmentation method based on normalizing flow to enhance the training data. Our experiments on sentiment transfer and formality transfer tasks show that StyleFlow outperforms strong baselines on both content preservation and style transfer.
2022
pdf
bib
abs
Improving Meta-learning for Low-resource Text Classification and Generation via Memory Imitation
Yingxiu Zhao
|
Zhiliang Tian
|
Huaxiu Yao
|
Yinhe Zheng
|
Dongkyu Lee
|
Yiping Song
|
Jian Sun
|
Nevin Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Building models of natural language processing (NLP) is challenging in low-resource scenarios where limited data are available. Optimization-based meta-learning algorithms achieve promising results in low-resource scenarios by adapting a well-generalized model initialization to handle new tasks. Nonetheless, these approaches suffer from the memorization overfitting issue, where the model tends to memorize the meta-training tasks while ignoring support sets when adapting to new tasks. To address this issue, we propose a memory imitation meta-learning (MemIML) method that enhances the model’s reliance on support sets for task adaptation. Specifically, we introduce a task-specific memory module to store support set information and construct an imitation module to force query sets to imitate the behaviors of support sets stored in the memory. A theoretical analysis is provided to prove the effectiveness of our method, and empirical results also demonstrate that our method outperforms competitive baselines on both text classification and generation tasks.
pdf
bib
abs
Empathetic and Emotionally Positive Conversation Systems with an Emotion-specific Query-Response Memory
Zhiliang Tian
|
Yinliang Wang
|
Yiping Song
|
Chi Zhang
|
Dongkyu Lee
|
Yingxiu Zhao
|
Dongsheng Li
|
Nevin L. Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022
Emotional conversation systems generate responses for the input queries considering the speaker’s emotions in a conversation. Existing emotional conversation systems output emotional responses according to either a given emotion or the user’s emotion reflected in the input queries. Following a given emotion may lead to an emotional drift between the given emotion and the conversation state, and following only the user’s emotion may aggravate the user’s negative feelings if users suffer from a negative mood. In this paper, we propose to generate empathetic responses catering to the user’s emotions while leading the conversation to be emotionally positive. Particularly, by abstracting the conversation corpus, we extract and store the different responding strategies for different users’ emotions and conversational topics into a memory. We encourage positive emotions in conversation via a sentiment evaluator. We model the memory outputs with a Gaussian mixture distribution and sample a final responding strategy from the distribution. The strategy acts as a condition to a transformer model to generate responses. The experiments verify our model surpasses the baseline methods in appropriateness, diversity, and generating emotionally positive responses.
2020
pdf
bib
abs
Response-Anticipated Memory for On-Demand Knowledge Integration in Response Generation
Zhiliang Tian
|
Wei Bi
|
Dongkyu Lee
|
Lanqing Xue
|
Yiping Song
|
Xiaojiang Liu
|
Nevin L. Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Neural conversation models are known to generate appropriate but non-informative responses in general. A scenario where informativeness can be significantly enhanced is Conversing by Reading (CbR), where conversations take place with respect to a given external document. In previous work, the external document is utilized by (1) creating a context-aware document memory that integrates information from the document and the conversational context, and then (2) generating responses referring to the memory. In this paper, we propose to create the document memory with some anticipated responses in mind. This is achieved using a teacher-student framework. The teacher is given the external document, the context, and the ground-truth response, and learns how to build a response-aware document memory from three sources of information. The student learns to construct a response-anticipated document memory from the first two sources, and teacher’s insight on memory creation. Empirical results show that our model outperforms the previous state-of-the-art for the CbR task.
pdf
bib
abs
Learning to Customize Model Structures for Few-shot Dialogue Generation Tasks
Yiping Song
|
Zequn Liu
|
Wei Bi
|
Rui Yan
|
Ming Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Training the generative models with minimal corpus is one of the critical challenges for building open-domain dialogue systems. Existing methods tend to use the meta-learning framework which pre-trains the parameters on all non-target tasks then fine-tunes on the target task. However, fine-tuning distinguishes tasks from the parameter perspective but ignores the model-structure perspective, resulting in similar dialogue models for different tasks. In this paper, we propose an algorithm that can customize a unique dialogue model for each task in the few-shot setting. In our approach, each dialogue model consists of a shared module, a gating module, and a private module. The first two modules are shared among all the tasks, while the third one will differentiate into different network structures to better capture the characteristics of the corresponding task. The extensive experiments on two datasets show that our method outperforms all the baselines in terms of task consistency, response quality, and diversity.
2017
pdf
bib
abs
Diversifying Neural Conversation Model with Maximal Marginal Relevance
Yiping Song
|
Zhiliang Tian
|
Dongyan Zhao
|
Ming Zhang
|
Rui Yan
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
Neural conversation systems, typically using sequence-to-sequence (seq2seq) models, are showing promising progress recently. However, traditional seq2seq suffer from a severe weakness: during beam search decoding, they tend to rank universal replies at the top of the candidate list, resulting in the lack of diversity among candidate replies. Maximum Marginal Relevance (MMR) is a ranking algorithm that has been widely used for subset selection. In this paper, we propose the MMR-BS decoding method, which incorporates MMR into the beam search (BS) process of seq2seq. The MMR-BS method improves the diversity of generated replies without sacrificing their high relevance with the user-issued query. Experiments show that our proposed model achieves the best performance among other comparison methods.
pdf
bib
abs
How to Make Context More Useful? An Empirical Study on Context-Aware Neural Conversational Models
Zhiliang Tian
|
Rui Yan
|
Lili Mou
|
Yiping Song
|
Yansong Feng
|
Dongyan Zhao
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Generative conversational systems are attracting increasing attention in natural language processing (NLP). Recently, researchers have noticed the importance of context information in dialog processing, and built various models to utilize context. However, there is no systematic comparison to analyze how to use context effectively. In this paper, we conduct an empirical study to compare various models and investigate the effect of context information in dialog systems. We also propose a variant that explicitly weights context vectors by context-query relevance, outperforming the other baselines.
2016
pdf
bib
abs
Sequence to Backward and Forward Sequences: A Content-Introducing Approach to Generative Short-Text Conversation
Lili Mou
|
Yiping Song
|
Rui Yan
|
Ge Li
|
Lu Zhang
|
Zhi Jin
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
Using neural networks to generate replies in human-computer dialogue systems is attracting increasing attention over the past few years. However, the performance is not satisfactory: the neural network tends to generate safe, universally relevant replies which carry little meaning. In this paper, we propose a content-introducing approach to neural network-based generative dialogue systems. We first use pointwise mutual information (PMI) to predict a noun as a keyword, reflecting the main gist of the reply. We then propose seq2BF, a “sequence to backward and forward sequences” model, which generates a reply containing the given keyword. Experimental results show that our approach significantly outperforms traditional sequence-to-sequence models in terms of human evaluation and the entropy measure, and that the predicted keyword can appear at an appropriate position in the reply.