Yichao Wang
2025
LLMTreeRec: Unleashing the Power of Large Language Models for Cold-Start Recommendations
Wenlin Zhang
|
Chuhan Wu
|
Xiangyang Li
|
Yuhao Wang
|
Kuicai Dong
|
Yichao Wang
|
Xinyi Dai
|
Xiangyu Zhao
|
Huifeng Guo
|
Ruiming Tang
Proceedings of the 31st International Conference on Computational Linguistics
The lack of training data gives rise to the system cold-start problem in recommendation systems, making them struggle to provide effective recommendations. To address this problem, Large Language Models(LLMs) can model recommendation tasks as language analysis tasks and provide zero-shot results based on their vast open-world knowledge. However, the large scale of the item corpus poses a challenge to LLMs, leading to substantial token consumption that makes it impractical to deploy in real-world recommendation systems. To tackle this challenge, we introduce a tree-based LLM recommendation framework LLMTreeRec, which structures all items into an item tree to improve the efficiency of LLM’s item retrieval. LLMTreeRec achieves state-of-the-art performance under the system cold-start setting in two widely used datasets, which is even competitive with conventional deep recommendation systems that use substantial training data. Furthermore, LLMTreeRec outperforms the baseline model in the A/B test on Huawei industrial system. Consequently, LLMTreeRec demonstrates its effectiveness as an industry-friendly solution that has been successfully deployed online.
Bridging Relevance and Reasoning: Rationale Distillation in Retrieval-Augmented Generation
Pengyue Jia
|
Derong Xu
|
Xiaopeng Li
|
Zhaocheng Du
|
Xiangyang Li
|
Yichao Wang
|
Yuhao Wang
|
Qidong Liu
|
Maolin Wang
|
Huifeng Guo
|
Ruiming Tang
|
Xiangyu Zhao
Findings of the Association for Computational Linguistics: ACL 2025
The reranker and generator are two critical components in the Retrieval-Augmented Generation (i.e., RAG) pipeline, responsible for ranking relevant documents and generating responses. However, due to differences in pre-training data and objectives, there is an inevitable gap between the documents ranked as relevant by the reranker and those required by the generator to support answering the query. To address this gap, we propose RADIO, a novel and practical preference alignment framework with RAtionale DIstillatiOn. Specifically, We first propose a rationale extraction method that leverages the reasoning capabilities of large language models (LLMs) to extract the rationales necessary for answering the query. Subsequently, a rationale-based alignment process is designed to rerank the documents based on the extracted rationales, and fine-tune the reranker to align the preferences. We conduct extensive experiments on two tasks across three datasets to demonstrate the effectiveness of our approach compared to baseline methods. Our code is released online to ease reproduction.
Search
Fix author
Co-authors
- Huifeng Guo 2
- Xiangyang Li 2
- Ruiming Tang 2
- Yuhao Wang 2
- Xiangyu Zhao 2
- show all...