Yequan Wang


2025

pdf bib
ChildMandarin: A Comprehensive Mandarin Speech Dataset for Young Children Aged 3-5
Jiaming Zhou | Shiyao Wang | Shiwan Zhao | Jiabei He | Haoqin Sun | Hui Wang | Cheng Liu | Aobo Kong | Yujie Guo | Xi Yang | Yequan Wang | Yonghua Lin | Yong Qin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automatic speech recognition (ASR) systems have advanced significantly with models like Whisper, Conformer, and self-supervised frameworks such as Wav2vec 2.0 and HuBERT. However, developing robust ASR models for young children’s speech remains challenging due to differences in pronunciation, tone, and pace compared to adult speech. In this paper, we introduce a new Mandarin speech dataset focused on children aged 3 to 5, addressing the scarcity of resources in this area. The dataset comprises 41.25 hours of speech with carefully crafted manual transcriptions, collected from 397 speakers across various provinces in China, with balanced gender representation. We provide a comprehensive analysis of speaker demographics, speech duration distribution and geographic coverage. Additionally, we evaluate ASR performance on models trained from scratch, such as Conformer, as well as fine-tuned pre-trained models like HuBERT and Whisper, where fine-tuning demonstrates significant performance improvements. Furthermore, we assess speaker verification (SV) on our dataset, showing that, despite the challenges posed by the unique vocal characteristics of young children, the dataset effectively supports both ASR and SV tasks. This dataset is a valuable contribution to Mandarin child speech research and holds potential for applications in educational technology and child-computer interaction. It will be open-source and freely available for all academic purposes.

pdf bib
Multi-Modality Expansion and Retention for LLMs through Parameter Merging and Decoupling
Junlin Li | Guodong Du | Jing Li | Sim Kuan Goh | Wenya Wang | Yequan Wang | Fangming Liu | Ho-Kin Tang | Saleh Alharbi | Daojing He | Min Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fine-tuning Large Language Models (LLMs) with multimodal encoders on modality-specific data expands the modalities that LLMs can handle, leading to the formation of Multimodal LLMs (MLLMs). However, this paradigm heavily relies on resource-intensive and inflexible fine-tuning from scratch with new multimodal data. In this paper, we propose MMER (Multi-modality Expansion and Retention), a training-free approach that integrates existing MLLMs for effective multimodal expansion while retaining their original performance. Specifically, MMER reuses MLLMs’ multimodal encoders while merging their LLM parameters. By comparing original and merged LLM parameters, MMER generates binary masks to approximately separate LLM parameters for each modality. These decoupled parameters can independently process modality-specific inputs, reducing parameter conflicts and preserving original MLLMs’ fidelity. MMER can also mitigate catastrophic forgetting by applying a similar process to MLLMs fine-tuned on new tasks. Extensive experiments show significant improvements over baselines, proving that MMER effectively expands LLMs’ multimodal capabilities while retaining 99% of the original performance, and also markedly mitigates catastrophic forgetting.

pdf bib
Exploiting Contextual Knowledge in LLMs through 𝒱-usable Information based Layer Enhancement
Xiaowei Yuan | Zhao Yang | Ziyang Huang | Yequan Wang | Siqi Fan | Yiming Ju | Jun Zhao | Kang Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet they often struggle with context-faithfulness generations that properly reflect contextual knowledge. While existing approaches focus on enhancing the decoding strategies, they ignore the fundamental mechanism of how contextual information is processed within LLMs’ internal states. As a result, LLMs remain limited in their ability to fully leverage contextual knowledge. In this paper, we propose Context-aware Layer Enhancement (CaLE), a novel intervention method that enhances the utilization of contextual knowledge within LLMs’ internal representations. By employing 𝒱-usable information analysis, CaLE strategically amplifies the growth of contextual information at an optimal layer, thereby enriching representations in the final layer. Our experiments demonstrate that CaLE effectively improves context-faithful generation in Question-Answering tasks, particularly in scenarios involving unknown or conflicting contextual knowledge.

pdf bib
Position-Aware Depth Decay Decoding (D3): Boosting Large Language Model Inference Efficiency
Siqi Fan | Xuezhi Fang | Xingrun Xing | Peng Han | Shuo Shang | Yequan Wang
Findings of the Association for Computational Linguistics: ACL 2025

Due to the large number of parameters, the inference phase of Large Language Models (LLMs) is resource-intensive. Unlike traditional model compression, which needs retraining, recent dynamic computation methods show that not all components are required for inference, enabling a training-free pipeline.In this paper, we focus on the dynamic depth of LLM generation. A token-position aware layer skipping framework is proposed to save 1.5x times operations efficiently while maintaining performance.We first observed that tokens predicted later have lower perplexity and thus require less computation. Then, we propose a training-free algorithm called Position-Aware Depth Decay Decoding (), which leverages a power-law decay function, \left\lfloor L × (𝛼i) \right\rfloor, to determine the number of layers to retain when generating token Ti. Remarkably, without any retraining, the achieves success across a wide range of generation tasks for the first time.Experiments on large language models (the Llama) with 7 ∼ 70 billion parameters show that can achieve an average 1.5x speedup compared with the full-inference pipeline while maintaining comparable performance with nearly no performance drop (<1%) on the GSM8K and BBH benchmarks.

pdf bib
Reflection on Knowledge Graph for Large Language Models Reasoning
Yigeng Zhou | Wu Li | Yifan Lu | Jing Li | Fangming Liu | Meishan Zhang | Yequan Wang | Daojing He | Honghai Liu | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Recent research shows that supplementing Large Language Models (LLMs) with knowledge graphs can enhance their performance. However, existing methods often introduce noise in the retrieval and reasoning pipeline, hindering LLMs’ ability to effectively integrate external knowledge for complex multi-hop question answering. To address this, we propose RefKG, a novel framework designed to enhance the reasoning capabilities of LLMs through reflective engagement with knowledge graphs. RefKG autonomously conduct retrieval and reflection on knowledge graphs. It consists of three modules: Query Decoupling, LLM-Driven Knowledge Graph Exploration, and Inference with Knowledge Reconstruction. We also introduce a multi-task tuning strategy that not only integrates external knowledge into LLMs but also trains them to leverage this knowledge for answering questions. This significantly improves their performance on knowledge-intensive tasks. Experiments on fact verification and knowledge graph question answering demonstrate RefKG’s effectiveness.

2024

pdf bib
Multimodal Reasoning with Multimodal Knowledge Graph
Junlin Lee | Yequan Wang | Jing Li | Min Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal reasoning with large language models (LLMs) often suffers from hallucinations and the presence of deficient or outdated knowledge within LLMs. Some approaches have sought to mitigate these issues by employing textual knowledge graphs, but their singular modality of knowledge limits comprehensive cross-modal understanding. In this paper, we propose the Multimodal Reasoning with Multimodal Knowledge Graph (MR-MKG) method, which leverages multimodal knowledge graphs (MMKGs) to learn rich and semantic knowledge across modalities, significantly enhancing the multimodal reasoning capabilities of LLMs. In particular, a relation graph attention network is utilized for encoding MMKGs and a cross-modal alignment module is designed for optimizing image-text alignment. A MMKG-grounded dataset is constructed to equip LLMs with initial expertise in multimodal reasoning through pretraining. Remarkably, MR-MKG achieves superior performance while training on only a small fraction of parameters, approximately 2.25% of the LLM’s parameter size. Experimental results on multimodal question answering and multimodal analogy reasoning tasks demonstrate that our MR-MKG method outperforms previous state-of-the-art models.

pdf bib
Commonsense Knowledge Editing Based on Free-Text in LLMs
Xiusheng Huang | Yequan Wang | Jun Zhao | Kang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Knowledge editing technology is crucial for maintaining the accuracy and timeliness of large language models (LLMs) . However, the setting of this task overlooks a significant portion of commonsense knowledge based on free-text in the real world, characterized by broad knowledge scope, long content and non instantiation. The editing objects of previous methods (e.g., MEMIT) were single token or entity, which were not suitable for commonsense knowledge in free-text form. To address the aforementioned challenges, we conducted experiments from two perspectives: knowledge localization and knowledge editing. Firstly, we introduced Knowledge Localization for Free-Text(KLFT) method, revealing the challenges associated with the distribution of commonsense knowledge in MLP and Attention layers, as well as in decentralized distribution. Next, we propose a Dynamics-aware Editing Method(DEM), which utilizes a Dynamics-aware Module to locate the parameter positions corresponding to commonsense knowledge, and uses Knowledge Editing Module to update knowledge. The DEM method fully explores the potential of the MLP and Attention layers, and successfully edits commonsense knowledge based on free-text. The experimental results indicate that the DEM can achieve excellent editing performance.

pdf bib
Improving Zero-shot LLM Re-Ranker with Risk Minimization
Xiaowei Yuan | Zhao Yang | Yequan Wang | Jun Zhao | Kang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

pdf bib
Discerning and Resolving Knowledge Conflicts through Adaptive Decoding with Contextual Information-Entropy Constraint
Xiaowei Yuan | Zhao Yang | Yequan Wang | Shengping Liu | Jun Zhao | Kang Liu
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) internalize enormous parametric knowledge during pre-training. Concurrently, realistic applications necessitate external contextual knowledge to aid models on the underlying tasks. This raises a crucial dilemma known as knowledge conflicts, where the contextual knowledge clashes with the parametric knowledge. However, existing decoding works are specialized in resolving knowledge conflicts and could inadvertently deteriorate performance in absence of conflicts. In this paper, we propose an adaptive decoding method, termed as contextual information-entropy constraint decoding (COIECD), to discern whether the knowledge conflicts occur and resolve them. It can improve the model’s faithfulness to conflicting context, and simultaneously maintain high performance among non-conflicting context. Our experiments show that COIECD exhibits strong performance and robustness over knowledge conflicts in realistic datasets.

2023

pdf bib
Knowledgeable Parameter Efficient Tuning Network for Commonsense Question Answering
Ziwang Zhao | Linmei Hu | Hanyu Zhao | Yingxia Shao | Yequan Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Commonsense question answering is important for making decisions about everyday matters. Although existing commonsense question answering works based on fully fine-tuned PLMs have achieved promising results, they suffer from prohibitive computation costs as well as poor interpretability. Some works improve the PLMs by incorporating knowledge to provide certain evidence, via elaborately designed GNN modules which require expertise. In this paper, we propose a simple knowledgeable parameter efficient tuning network to couple PLMs with external knowledge for commonsense question answering. Specifically, we design a trainable parameter-sharing adapter attached to a parameter-freezing PLM to incorporate knowledge at a small cost. The adapter is equipped with both entity- and query-related knowledge via two auxiliary knowledge-related tasks (i.e., span masking and relation discrimination). To make the adapter focus on the relevant knowledge, we design gating and attention mechanisms to respectively filter and fuse the query information from the PLM. Extensive experiments on two benchmark datasets show that KPE is parameter-efficient and can effectively incorporate knowledge for improving commonsense question answering.

pdf bib
Rethinking Document-Level Relation Extraction: A Reality Check
Jing Li | Yequan Wang | Shuai Zhang | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Recently, numerous efforts have continued to push up performance boundaries of document-level relation extraction (DocRE) and have claimed significant progress in DocRE. In this paper, we do not aim at proposing a novel model for DocRE. Instead, we take a closer look at the field to see if these performance gains are actually true. By taking a comprehensive literature review and a thorough examination of popular DocRE datasets, we find that these performance gains are achieved upon a strong or even untenable assumption in common: all named entities are perfectly localized, normalized, and typed in advance. Next, we construct four types of entity mention attacks to examine the robustness of typical DocRE models by behavioral probing. We also have a close check on model usability in a more realistic setting. Our findings reveal that most of current DocRE models are vulnerable to entity mention attacks and difficult to be deployed in real-world end-user NLP applications. Our study calls more attentions for future research to stop simplifying problem setups, and to model DocRE in the wild rather than in an unrealistic Utopian world.

2022

pdf bib
CofeNet: Context and Former-Label Enhanced Net for Complicated Quotation Extraction
Yequan Wang | Xiang Li | Aixin Sun | Xuying Meng | Huaming Liao | Jiafeng Guo
Proceedings of the 29th International Conference on Computational Linguistics

Quotation extraction aims to extract quotations from written text. There are three components in a quotation: source refers to the holder of the quotation, cue is the trigger word(s), and content is the main body. Existing solutions for quotation extraction mainly utilize rule-based approaches and sequence labeling models. While rule-based approaches often lead to low recalls, sequence labeling models cannot well handle quotations with complicated structures. In this paper, we propose the Context and Former-Label Enhanced Net () for quotation extraction. is able to extract complicated quotations with components of variable lengths and complicated structures. On two public datasets (and ) and one proprietary dataset (), we show that our achieves state-of-the-art performance on complicated quotation extraction.

pdf bib
A Dual-Channel Framework for Sarcasm Recognition by Detecting Sentiment Conflict
Yiyi Liu | Yequan Wang | Aixin Sun | Xuying Meng | Jing Li | Jiafeng Guo
Findings of the Association for Computational Linguistics: NAACL 2022

Sarcasm employs ambivalence, where one says something positive but actually means negative, and vice versa. The essence of sarcasm, which is also a sufficient and necessary condition, is the conflict between literal and implied sentiments expressed in one sentence. However, it is difficult to recognize such sentiment conflict because the sentiments are mixed or even implicit. As a result, the recognition of sophisticated and obscure sentiment brings in a great challenge to sarcasm detection. In this paper, we propose a Dual-Channel Framework by modeling both literal and implied sentiments separately. Based on this dual-channel framework, we design the Dual-Channel Network (DC-Net) to recognize sentiment conflict. Experiments on political debates (i.e. IAC-V1 and IAC-V2) and Twitter datasets show that our proposed DC-Net achieves state-of-the-art performance on sarcasm recognition. Our code is released to support research.

pdf bib
CORT: A New Baseline for Comparative Opinion Classification by Dual Prompts
Yequan Wang | Hengran Zhang | Aixin Sun | Xuying Meng
Findings of the Association for Computational Linguistics: EMNLP 2022

Comparative opinion is a common linguistic phenomenon. The opinion is expressed by comparing multiple targets on a shared aspect, e.g., “camera A is better than camera B in picture quality”. Among the various subtasks in opinion mining, comparative opinion classification is relatively less studied. Current solutions use rules or classifiers to identify opinions, i.e., better, worse, or same, through feature engineering. Because the features are directly derived from the input sentence, these solutions are sensitive to the order of the targets mentioned in the sentence. For example, “camera A is better than camera B” means the same as “camera B is worse than camera A”; but the features of these two sentences are completely different. In this paper, we approach comparative opinion classification through prompt learning, taking the advantage of embedded knowledge in pre-trained language model. We design a twin framework with dual prompts, named CORT. This extremely simple model delivers state-of-the-art and robust performance on all benchmark datasets for comparative opinion classification. We believe CORT well serves as a new baseline for comparative opinion classification.

2016

pdf bib
Attention-based LSTM for Aspect-level Sentiment Classification
Yequan Wang | Minlie Huang | Xiaoyan Zhu | Li Zhao
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing