Yao Shu
2025
Flexora: Flexible Low-Rank Adaptation for Large Language Models
Chenxing Wei
|
Yao Shu
|
Ying Tiffany He
|
Fei Yu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have revolutionized artificial intelligence, but their performance on specific tasks is often limited by knowledge boundaries. While fine-tuning techniques like low-rank adaptation (LoRA) aim to address this, they can suffer from overfitting. We propose flexible low-rank adaptation (Flexora), a novel method that automatically selects the most critical layers for fine-tuning to optimize performance across diverse downstream tasks. Flexora formulates layer selection as a hyperparameter optimization problem, employs unrolled differentiation for efficient solving, and identifies the most impactful layers based on optimized hyperparameters. Extensive experiments across various pre-trained models and natural language tasks demonstrate that Flexora consistently outperforms existing baselines. We provide theoretical insights and comprehensive ablation studies to elucidate the effectiveness of Flexora. Therefore, Flexora offers a robust solution to enhance LoRA fine-tuning for LLMs, potentially advancing the field of adaptive language model optimization.
2024
Position Paper: Data-Centric AI in the Age of Large Language Models
Xinyi Xu
|
Zhaoxuan Wu
|
Rui Qiao
|
Arun Verma
|
Yao Shu
|
Jingtan Wang
|
Xinyuan Niu
|
Zhenfeng He
|
Jiangwei Chen
|
Zijian Zhou
|
Gregory Kang Ruey Lau
|
Hieu Dao
|
Lucas Agussurja
|
Rachael Hwee Ling Sim
|
Xiaoqiang Lin
|
Wenyang Hu
|
Zhongxiang Dai
|
Pang Wei Koh
|
Bryan Kian Hsiang Low
Findings of the Association for Computational Linguistics: EMNLP 2024
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs). We start by making a key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs, and advocate that data-centric research should receive more attention from the community. We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization. In each scenario, we underscore the importance of data, highlight promising research directions, and articulate the potential impacts on the research community and, where applicable, the society as a whole. For instance, we advocate for a suite of data-centric benchmarks tailored to the scale and complexity of data for LLMs. These benchmarks can be used to develop new data curation methods and document research efforts and results, which can help promote openness and transparency in AI and LLM research.
Search
Fix author
Co-authors
- Lucas Agussurja 1
- Jiangwei Chen 1
- Zhongxiang Dai 1
- Hieu Dao 1
- Zhenfeng He 1
- show all...