Yanzhen Shen


2025

pdf bib
A Unified Taxonomy-Guided Instruction Tuning Framework for Entity Set Expansion and Taxonomy Expansion
Yanzhen Shen | Yu Zhang | Yunyi Zhang | Jiawei Han
Findings of the Association for Computational Linguistics: ACL 2025

Entity set expansion, taxonomy expansion, and seed-guided taxonomy construction are three representative tasks that can be applied to automatically populate an existing taxonomy with emerging concepts. Previous studies view them as three separate tasks. Therefore, their proposed techniques usually work for one specific task only, lacking generalizability and a holistic perspective. In this paper, we aim at a unified solution to the three tasks. To be specific, we identify two common skills needed for entity set expansion, taxonomy expansion, and seed-guided taxonomy construction: finding “siblings” and finding “parents”. We propose a taxonomy-guided instruction tuning framework to teach a large language model to generate siblings and parents for query entities, where the joint pre-training process facilitates the mutual enhancement of the two skills. Extensive experiments on multiple benchmark datasets demonstrate the efficacy of our proposed TaxoInstruct framework, which outperforms task-specific baselines across all three tasks.

2023

pdf bib
Reaction Miner: An Integrated System for Chemical Reaction Extraction from Textual Data
Ming Zhong | Siru Ouyang | Yizhu Jiao | Priyanka Kargupta | Leo Luo | Yanzhen Shen | Bobby Zhou | Xianrui Zhong | Xuan Liu | Hongxiang Li | Jinfeng Xiao | Minhao Jiang | Vivian Hu | Xuan Wang | Heng Ji | Martin Burke | Huimin Zhao | Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Chemical reactions, as a core entity in the realm of chemistry, hold crucial implications in diverse areas ranging from hands-on laboratory research to advanced computational drug design. Despite a burgeoning interest in employing NLP techniques to extract these reactions, aligning this task with the real-world requirements of chemistry practitioners remains an ongoing challenge. In this paper, we present Reaction Miner, a system specifically designed to interact with raw scientific literature, delivering precise and more informative chemical reactions. Going beyond mere extraction, Reaction Miner integrates a holistic workflow: it accepts PDF files as input, bypassing the need for pre-processing and bolstering user accessibility. Subsequently, a text segmentation module ensures that the refined text encapsulates complete chemical reactions, augmenting the accuracy of extraction. Moreover, Reaction Miner broadens the scope of existing pre-defined reaction roles, including vital attributes previously neglected, thereby offering a more comprehensive depiction of chemical reactions. Evaluations conducted by chemistry domain users highlight the efficacy of each module in our system, demonstrating Reaction Miner as a powerful tool in this field.