Pruning has become a widely adopted technique for reducing the hardware requirements of large language models (LLMs). To recover model performance after pruning, post-training is commonly employed to mitigate the resulting performance degradation. While post-training benefits from larger datasets, once the dataset size is already substantial, increasing the training data provides only limited performance gains. To balance post-training cost and model performance, it is necessary to explore the optimal amount of post-training data. Through extensive experiments on the Llama-3 and Qwen-2.5 series models, pruned using various common pruning methods, we uncover the scaling Law for Post-training after model Pruning, referred to as the P2 Law. This law identifies four key factors for predicting the pruned model’s post-training loss: the model size before pruning, the number of post-training tokens, the pruning rate, and the model’s loss before pruning. Moreover, P2 Law can generalize to larger dataset sizes, larger model sizes, and higher pruning rates, offering valuable insights for the post-training of pruned LLMs.
Knowledge base question generation (KBQG) aims to generate natural language questions from a set of triplet facts extracted from KB. Existing methods have significantly boosted the performance of KBQG via pre-trained language models (PLMs) thanks to the richly endowed semantic knowledge. With the advance of pre-training techniques, large language models (LLMs) (e.g., GPT-3.5) undoubtedly possess much more semantic knowledge. Therefore, how to effectively organize and exploit the abundant knowledge for KBQG becomes the focus of our study. In this work, we propose SGSH — a simple and effective framework to Stimulate GPT-3.5 with Skeleton Heuristics to enhance KBQG. The framework incorporates “skeleton heuristics”, which provides more fine-grained guidance associated with each input to stimulate LLMs to generate optimal questions, encompassing essential elements like the question phrase and the auxiliary verb.More specifically, we devise an automatic data construction strategy leveraging ChatGPT to construct a skeleton training dataset, based on which we employ a soft prompting approach to train a BART model dedicated to generating the skeleton associated with each input.Subsequently, skeleton heuristics are encoded into the prompt to incentivize GPT-3.5 to generate desired questions. Extensive experiments demonstrate that SGSH derives the new state-of-the-art performance on the KBQG tasks.
Existing methods on knowledge base question generation (KBQG) learn a one-size-fits-all model by training together all subgraphs without distinguishing the diverse semantics of subgraphs. In this work, we show that making use of the past experience on semantically similar subgraphs can reduce the learning difficulty and promote the performance of KBQG models. To achieve this, we propose a novel approach to model diverse subgraphs with meta-learner (DSM). Specifically, we devise a graph contrastive learning-based retriever to identify semantically similar subgraphs, so that we can construct the semantics-aware learning tasks for the meta-learner to learn semantics-specific and semantics-agnostic knowledge on and across these tasks. Extensive experiments on two widely-adopted benchmarks for KBQG show that DSM derives new state-of-the-art performance and benefits the question answering tasks as a means of data augmentation.