Yanjie Wang


2025

pdf bib
Advancing Sequential Numerical Prediction in Autoregressive Models
Xiang Fei | Jinghui Lu | Qi Sun | Hao Feng | Yanjie Wang | Wei Shi | An-Lan Wang | Jingqun Tang | Can Huang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Autoregressive models have become the de facto choice for sequence generation tasks, but standard approaches treat digits as independent tokens and apply cross-entropy loss, overlooking the coherent structure of numerical sequences. This paper introduces Numerical Token Integrity Loss(NTIL) to address this gap. NTIL operates at two levels: (1) token-level, where it extends the Earth Mover’s Distance (EMD) to preserve ordinal relationships between numerical values, and (2) sequence-level, where it penalizes the overall discrepancy between the predicted and actual sequences. This dual approach improves numerical prediction and integrates effectively with LLMs/MLLMs. Extensive experiments show significant performance improvements with NTIL.

pdf bib
A Bounding Box is Worth One Token - Interleaving Layout and Text in a Large Language Model for Document Understanding
Jinghui Lu | Haiyang Yu | Yanjie Wang | Yongjie Ye | Jingqun Tang | Ziwei Yang | Binghong Wu | Qi Liu | Hao Feng | Han Wang | Hao Liu | Can Huang
Findings of the Association for Computational Linguistics: ACL 2025

Recently, many studies have demonstrated that exclusively incorporating OCR-derived text and spatial layouts with large language models (LLMs) can be highly effective for document understanding tasks. However, existing methods that integrate spatial layouts with text have limitations, such as producing overly long text sequences or failing to fully leverage the autoregressive traits of LLMs. In this work, we introduce Interleaving Layout andText in a Large Language Model (LayTextLLM) for document understanding. LayTextLLM projects each bounding box to a single embedding and interleaves it with text, efficiently avoiding long sequence issues while leveraging autoregressive traits of LLMs. LayTextLLM not only streamlines the interaction of layout and textual data but also shows enhanced performance in KIE and VQA. Comprehensive benchmark evaluations reveal significant improvements of LayTextLLM, with a 15.2% increase on KIE tasks and 10.7% on VQA tasks compared to previous SOTA OCR-based LLMs. All resources are available at URL masked for anonymous review.

pdf bib
MTVQA: Benchmarking Multilingual Text-Centric Visual Question Answering
Jingqun Tang | Qi Liu | Yongjie Ye | Jinghui Lu | Shu Wei | An-Lan Wang | Chunhui Lin | Hao Feng | Zhen Zhao | Yanjie Wang | Yuliang Liu | Hao Liu | Xiang Bai | Can Huang
Findings of the Association for Computational Linguistics: ACL 2025

Text-Centric Visual Question Answering (TEC-VQA) in its proper format not only facilitates human-machine interaction in text-centric visual environments but also serves as a de facto gold proxy to evaluate AI models in the domain of text-centric scene understanding. Nonetheless, most existing TEC-VQA benchmarks focus on high-resource languages like English and Chinese. Despite pioneering works expanding multilingual QA pairs in non-text-centric VQA datasets through translation engines, the translation-based protocol encounters a substantial “visual-textual misalignment” problem when applied to TEC-VQA. Specifically, it prioritizes the text in question-answer pairs while disregarding the visual text present in images. Moreover, it fails to address complexities related to nuanced meaning, contextual distortion, language bias, and question-type diversity. In this work, we tackle multilingual TEC-VQA by introducing MTVQA, the first benchmark featuring high-quality human expert annotations across 9 diverse languages, consisting of 6,778 question-answer pairs across 2,116 images. Further, by comprehensively evaluating numerous state-of-the-art Multimodal Large Language Models (MLLMs), including Qwen2.5-VL, InternVL-2.5, GPT-4o, GPT-4V, Claude3, and Gemini, on the MTVQA benchmark, it is evident that there is still a large room for performance improvement (InternVL-2.5 scoring 32.2 versus 79.7 for human performance), underscoring the value of MTVQA. By providing a dataset with nuanced multilingual annotations, MTVQA aims to set a new standard for benchmarks, fostering advancements in multilingual visual text comprehension.

2020

pdf bib
Can We Predict New Facts with Open Knowledge Graph Embeddings? A Benchmark for Open Link Prediction
Samuel Broscheit | Kiril Gashteovski | Yanjie Wang | Rainer Gemulla
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Open Information Extraction systems extract (“subject text”, “relation text”, “object text”) triples from raw text. Some triples are textual versions of facts, i.e., non-canonicalized mentions of entities and relations. In this paper, we investigate whether it is possible to infer new facts directly from the open knowledge graph without any canonicalization or any supervision from curated knowledge. For this purpose, we propose the open link prediction task,i.e., predicting test facts by completing (“subject text”, “relation text”, ?) questions. An evaluation in such a setup raises the question if a correct prediction is actually a new fact that was induced by reasoning over the open knowledge graph or if it can be trivially explained. For example, facts can appear in different paraphrased textual variants, which can lead to test leakage. To this end, we propose an evaluation protocol and a methodology for creating the open link prediction benchmark OlpBench. We performed experiments with a prototypical knowledge graph embedding model for openlink prediction. While the task is very challenging, our results suggests that it is possible to predict genuinely new facts, which can not be trivially explained.

2019

pdf bib
On Evaluating Embedding Models for Knowledge Base Completion
Yanjie Wang | Daniel Ruffinelli | Rainer Gemulla | Samuel Broscheit | Christian Meilicke
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

Knowledge graph embedding models have recently received significant attention in the literature. These models learn latent semantic representations for the entities and relations in a given knowledge base; the representations can be used to infer missing knowledge. In this paper, we study the question of how well recent embedding models perform for the task of knowledge base completion, i.e., the task of inferring new facts from an incomplete knowledge base. We argue that the entity ranking protocol, which is currently used to evaluate knowledge graph embedding models, is not suitable to answer this question since only a subset of the model predictions are evaluated. We propose an alternative entity-pair ranking protocol that considers all model predictions as a whole and is thus more suitable to the task. We conducted an experimental study on standard datasets and found that the performance of popular embeddings models was unsatisfactory under the new protocol, even on datasets that are generally considered to be too easy. Moreover, we found that a simple rule-based model often provided superior performance. Our findings suggest that there is a need for more research into embedding models as well as their training strategies for the task of knowledge base completion.