2025
pdf
bib
abs
Improving Contextual Faithfulness of Large Language Models via Retrieval Heads-Induced Optimization
Lei Huang
|
Xiaocheng Feng
|
Weitao Ma
|
Yuchun Fan
|
Xiachong Feng
|
Yangfan Ye
|
Weihong Zhong
|
Yuxuan Gu
|
Baoxin Wang
|
Dayong Wu
|
Guoping Hu
|
Bing Qin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Ensuring contextual faithfulness in retrieval-augmented large language models (LLMs) is crucial for building trustworthy information-seeking systems, particularly in long-form question-answering (LFQA) scenarios. In this work, we identify a salient correlation between LFQA faithfulness and retrieval heads, a set of attention heads responsible for retrieving contextual information. Leveraging this insight, we propose RHIO, a framework designed to teach LLMs to explicitly discriminate between faithful and unfaithful generations. RHIO first augments unfaithful samples that simulate realistic model-intrinsic errors by selectively masking retrieval heads. Then, these samples are incorporated into joint training, enabling the model to distinguish unfaithful outputs from faithful ones conditioned on control tokens. Furthermore, these control tokens are leveraged to self-induce contrastive outputs, amplifying their difference through contrastive decoding. Additionally, to facilitate the evaluation of contextual faithfulness, we also introduce GroundBench, a comprehensive benchmark compiled from five existing LFQA datasets. Extensive experimental results on GroundBench demonstrate that RHIO significantly improves faithfulness, even outperforming GPT-4o.
pdf
bib
abs
CC-Tuning: A Cross-Lingual Connection Mechanism for Improving Joint Multilingual Supervised Fine-Tuning
Yangfan Ye
|
Xiaocheng Feng
|
Zekun Yuan
|
Xiachong Feng
|
Libo Qin
|
Lei Huang
|
Weitao Ma
|
Yichong Huang
|
Zhirui Zhang
|
Yunfei Lu
|
Xiaohui Yan
|
Duyu Tang
|
Dandan Tu
|
Bing Qin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Current large language models (LLMs) often exhibit imbalanced multilingual capabilities due to their English-centric training corpora. To address this, existing fine-tuning approaches operating at the data-level (e.g., through data augmentation or distillation) typically introduce implicit cross-lingual alignment, overlooking the potential for more profound, latent-level cross-lingual interactions. In this work, we propose CC-Tuning, a novel multilingual fine-tuning paradigm that explicitly establishes a cross-lingual connection mechanism at the latent level. During training, CC-Tuning fuses the feed forward activations from both English and non-English inputs, enabling the model to benefit from both linguistic resources. This process is facilitated with a trainable Decision Maker that identifies beneficial activations. Furthermore, during inference, a Transform Matrix is utilized to simulate the cross-lingual connection under monolingual setting through representation transformation. Our experiments on six benchmarks covering 22 languages show that CC-Tuning outperforms vanilla SFT and offers a strong latent-level alternative to data-level augmentation methods. Further analysis also highlights the practicality of CC-Tuning and the potential of latent-level cross-lingual interactions in advancing the multilingual performance of LLMs.
pdf
bib
abs
Alleviating Hallucinations from Knowledge Misalignment in Large Language Models via Selective Abstention Learning
Lei Huang
|
Xiaocheng Feng
|
Weitao Ma
|
Yuchun Fan
|
Xiachong Feng
|
Yuxuan Gu
|
Yangfan Ye
|
Liang Zhao
|
Weihong Zhong
|
Baoxin Wang
|
Dayong Wu
|
Guoping Hu
|
Lingpeng Kong
|
Tong Xiao
|
Ting Liu
|
Bing Qin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) are known to suffer from severe hallucination issues. One of the main causes lies in the knowledge misalignment between the pre-training stage and the supervised fine-tuning stage. The unfamiliar knowledge encountered during fine-tuning may encourage LLMs to generate facts that are not grounded in parametric knowledge. To address this, we propose Seal, a novel training objective with an abstention mechanism, in which the model learns to selectively reject tokens that misalign with the desired knowledge distribution via a special [REJ] token. This allows the model the option of acknowledging the insufficiency of knowledge rather than blindly assigning high probability to all ground-truth answers. We further propose a regularized decoding objective that penalizes uncertain predictions during inference by using the [REJ] probability learned during training. Extensive experiments on six short-form and long-form QA datasets with three LLMs of different sizes demonstrate that our method effectively alleviates hallucinations caused by knowledge misalignment. Further analysis highlights the adaptations of our method in answer refusal scenarios and its ability to effectively maintain the model’s instruction-following capabilities.
pdf
bib
abs
Unveiling Entity-Level Unlearning for Large Language Models: A Comprehensive Analysis
Weitao Ma
|
Xiaocheng Feng
|
Weihong Zhong
|
Lei Huang
|
Yangfan Ye
|
Xiachong Feng
|
Bing Qin
Proceedings of the 31st International Conference on Computational Linguistics
Large language model unlearning has garnered increasing attention due to its potential to address security and privacy concerns, leading to extensive research in the field. However, existing studies have predominantly focused on instance-level unlearning, specifically targeting the removal of predefined instances containing sensitive content. This focus has left a gap in the exploration of removing an entire entity, which is critical in real-world scenarios such as copyright protection. To close this gap, we propose a novel task named Entity-level unlearning, which aims to erase entity-related knowledge from the target model completely. To investigate this task, we systematically evaluate popular unlearning algorithms, revealing that current methods struggle to achieve effective entity-level unlearning. Then, we further explore the factors that influence the performance of unlearning algorithms, identifying that the knowledge coverage of the forget set and its size play pivotal roles. Notably, our analysis also uncovers that entities introduced through fine-tuning are more vulnerable than pre-trained entities during unlearning. We hope these findings can inspire future improvements in entity-level unlearning for LLMs.
2024
pdf
bib
abs
GlobeSumm: A Challenging Benchmark Towards Unifying Multi-lingual, Cross-lingual and Multi-document News Summarization
Yangfan Ye
|
Xiachong Feng
|
Xiaocheng Feng
|
Weitao Ma
|
Libo Qin
|
Dongliang Xu
|
Qing Yang
|
Hongtao Liu
|
Bing Qin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
News summarization in today’s global scene can be daunting with its flood of multilingual content and varied viewpoints from different sources. However, current studies often neglect such real-world scenarios as they tend to focus solely on either single-language or single-document tasks. To bridge this gap, we aim to unify Multi-lingual, Cross-lingual and Multi-document Summarization into a novel task, i.e., MCMS, which encapsulates the real-world requirements all-in-one. Nevertheless, the lack of a benchmark inhibits researchers from adequately studying this invaluable problem. To tackle this, we have meticulously constructed the GLOBESUMM dataset by first collecting a wealth of multilingual news reports and restructuring them into event-centric format. Additionally, we introduce the method of protocol-guided prompting for high-quality and cost-effective reference annotation. In MCMS, we also highlight the challenge of conflicts between news reports, in addition to the issues of redundancies and omissions, further enhancing the complexity of GLOBESUMM. Through extensive experimental analysis, we validate the quality of our dataset and elucidate the inherent challenges of the task. We firmly believe that GLOBESUMM, given its challenging nature, will greatly contribute to the multilingual communities and the evaluation of LLMs.