Yuyang Bai


2025

pdf bib
CodeTaxo: Enhancing Taxonomy Expansion with Limited Examples via Code Language Prompts
Qingkai Zeng | Yuyang Bai | Zhaoxuan Tan | Zhenyu Wu | Shangbin Feng | Meng Jiang
Findings of the Association for Computational Linguistics: ACL 2025

Taxonomies provide structural representations of knowledge and are crucial in various applications. The task of taxonomy expansion involves integrating emerging entities into existing taxonomies by identifying appropriate parent entities for these new query entities. Previous methods rely on self-supervised techniques that generate annotation data from existing taxonomies but are less effective with small taxonomies (fewer than 100 entities). In this work, we introduce CodeTaxo, a novel approach that leverages large language models through code language prompts to capture the taxonomic structure. Extensive experiments on five real-world benchmarks from different domains demonstrate that CodeTaxo consistently achieves superior performance across all evaluation metrics, significantly outperforming previous state-of-the-art methods. The code and data are available at https://github.com/QingkaiZeng/CodeTaxo-official.

2023

pdf bib
FactKB: Generalizable Factuality Evaluation using Language Models Enhanced with Factual Knowledge
Shangbin Feng | Vidhisha Balachandran | Yuyang Bai | Yulia Tsvetkov
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Evaluating the factual consistency of automatically generated summaries is essential for the progress and adoption of reliable summarization systems. Despite recent advances, existing factuality evaluation models are not robust, being especially prone to entity and relation errors in new domains. We propose FactKB—a simple new approach to factuality evaluation that is generalizable across domains, in particular with respect to entities and relations. FactKB is based on language models pretrained using facts extracted from external knowledge bases. We introduce three types of complementary factuality pretraining objectives based on entity-specific facts, facts extracted from auxiliary knowledge about entities, and facts constructed compositionally through knowledge base walks. The resulting factuality evaluation model achieves state-of-the-art performance on two in-domain news summarization benchmarks as well as on three out-of-domain scientific literature datasets. Further analysis of FactKB shows improved ability to detect erroneous entities and relations in summaries and is robust and easily generalizable across domains.

pdf bib
Detecting Spoilers in Movie Reviews with External Movie Knowledge and User Networks
Heng Wang | Wenqian Zhang | Yuyang Bai | Zhaoxuan Tan | Shangbin Feng | Qinghua Zheng | Minnan Luo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Online movie review platforms are providing crowdsourced feedback for the film industry and the general public, while spoiler reviews greatly compromise user experience. Although preliminary research efforts were made to automatically identify spoilers, they merely focus on the review content itself, while robust spoiler detection requires putting the review into the context of facts and knowledge regarding movies, user behavior on film review platforms, and more. In light of these challenges, we first curate a large-scale network-based spoiler detection dataset LCS and a comprehensive and up-to-date movie knowledge base UKM. We then propose MVSD, a novel spoiler detection model that takes into account the external knowledge about movies and user activities on movie review platforms. Specifically, MVSD constructs three interconnecting heterogeneous information networks to model diverse data sources and their multi-view attributes, while we design and employ a novel heterogeneous graph neural network architecture for spoiler detection as node-level classification. Extensive experiments demonstrate that MVSD advances the state-of-the-art on two spoiler detection datasets, while the introduction of external knowledge and user interactions help ground robust spoiler detection.