Yun Lin


2024

pdf
CoCoST: Automatic Complex Code Generation with Online Searching and Correctness Testing
Xinyi He | Jiaru Zou | Yun Lin | Mengyu Zhou | Shi Han | Zejian Yuan | Dongmei Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models have revolutionized code generation ability by converting natural language descriptions into executable code. However, generating complex code within real-world scenarios remains challenging due to intricate structures, subtle bugs, understanding of advanced data types, and lack of supplementary contents. To address these challenges, we introduce the CoCoST framework, which enhances complex code generation by online searching for more information with planned queries and correctness testing for code refinement. Moreover, CoCoST serializes the complex inputs and outputs to improve comprehension and generates test cases to ensure the adaptability for real-world applications. CoCoST is validated through rigorous experiments on the DS-1000 and ClassEval datasets. Experimental results show that CoCoST substantially improves the quality of complex code generation, highlighting its potential to enhance the practicality of LLMs in generating complex code.

pdf
Encoding Spreadsheets for Large Language Models
Haoyu Dong | Jianbo Zhao | Yuzhang Tian | Junyu Xiong | Mengyu Zhou | Yun Lin | José Cambronero | Yeye He | Shi Han | Dongmei Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Spreadsheets are characterized by their extensive two-dimensional grids, flexible layouts, and varied formatting options, which pose significant challenges for large language models (LLMs). In response, we introduce SheetEncoder, pioneering an efficient encoding method designed to unleash and optimize LLMs’ powerful understanding and reasoning capability on spreadsheets. Initially, we propose a vanilla serialization approach that incorporates cell addresses, values, and formats. However, this approach was limited by LLMs’ token constraints, making it impractical for most applications. To tackle this challenge, three innovative modules are proposed to compress spreadsheets effectively: structural-anchor-based compression, inverse index translation, and data-format-aware aggregation. It significantly improves performance in spreadsheet table detection task, outperforming the vanilla approach by 25.6% in GPT4’s in-context learning setting. Moreover, fine-tuned LLM with SheetEncoder has an average compression ratio of 25×, but achieves a state-of-the-art 78.9% F1 score, surpassing the best existing models by 12.3%, demonstrating that SheetEncoder greatly boosts LLMs’s performance on spreadsheet data.

pdf
PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models
Huixuan Zhang | Yun Lin | Xiaojun Wan
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) are known to be trained on vast amounts of data, which may unintentionally or intentionally include data from commonly used benchmarks. This inclusion can lead to cheatingly high scores on model leaderboards, yet result in disappointing performance in real-world applications. To address this benchmark contamination problem, we first propose a set of requirements that practical contamination detection methods should follow. Following these proposed requirements, we introduce PaCoST, a Paired Confidence Significance Testing to effectively detect benchmark contamination in LLMs. Our method constructs a counterpart for each piece of data with the same distribution, and performs statistical analysis of the corresponding confidence to test whether the model is significantly more confident under the original benchmark. We validate the effectiveness of PaCoST and apply it on popular open-source models and benchmarks. We find that almost all models and benchmarks we tested are suspected contaminated more or less. We finally call for new LLM evaluation methods.

2022

pdf
Soft-Labeled Contrastive Pre-Training for Function-Level Code Representation
Xiaonan Li | Daya Guo | Yeyun Gong | Yun Lin | Yelong Shen | Xipeng Qiu | Daxin Jiang | Weizhu Chen | Nan Duan
Findings of the Association for Computational Linguistics: EMNLP 2022

Code contrastive pre-training has recently achieved significant progress on code-related tasks. In this paper, we present SCodeR, a Soft-labeled contrastive pre-training framework with two positive sample construction methods to learn functional-level Code Representation. Considering the relevance between codes in a large-scale code corpus, the soft-labeled contrastive pre-training can obtain fine-grained soft-labels through an iterative adversarial manner and use them to learn better code representation. The positive sample construction is another key for contrastive pre-training. Previous works use transformation-based methods like variable renaming to generate semantically equal positive codes. However, they usually result in the generated code with a highly similar surface form, and thus mislead the model to focus on superficial code structure instead of code semantics. To encourage SCodeR to capture semantic information from the code, we utilize code comments and abstract syntax sub-trees of the code to build positive samples. We conduct experiments on four code-related tasks over seven datasets. Extensive experimental results show that SCodeR achieves new state-of-the-art performance on all of them, which illustrates the effectiveness of the proposed pre-training method.