Yujin Kim


2024

pdf
BAPO: Base-Anchored Preference Optimization for Overcoming Forgetting in Large Language Models Personalization
Gihun Lee | Minchan Jeong | Yujin Kim | Hojung Jung | Jaehoon Oh | SangMook Kim | Se-Young Yun
Findings of the Association for Computational Linguistics: EMNLP 2024

While learning to align Large Language Models (LLMs) with human preferences has shown remarkable success, aligning these models to meet the diverse user preferences presents further challenges in preserving previous knowledge. This paper examines the impact of personalized preference optimization on LLMs, revealing that the extent of knowledge loss varies significantly with preference heterogeneity. Although previous approaches have utilized the KL constraint between the reference model and the policy model, we observe that they fail to maintain general knowledge and alignment when facing personalized preferences. To this end, we introduce Base-Anchored Preference Optimization (BAPO), a simple yet effective approach that utilizes the initial responses of reference model to mitigate forgetting while accommodating personalized alignment. BAPO effectively adapts to diverse user preferences while minimally affecting global knowledge or general alignment. Our experiments demonstrate the efficacy of BAPO in various setups.

pdf
Carpe diem: On the Evaluation of World Knowledge in Lifelong Language Models
Yujin Kim | Jaehong Yoon | Seonghyeon Ye | Sangmin Bae | Namgyu Ho | Sung Ju Hwang | Se-Young Yun
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The dynamic nature of knowledge in an ever-changing world presents challenges for language models trained on static data; the model in the real world often requires not only acquiring new knowledge but also overwriting outdated information into updated ones. To study the ability of language models for these time-dependent dynamics in human language, we introduce a novel task, EvolvingQA, a temporally evolving question-answering benchmark designed for training and evaluating LMs on an evolving Wikipedia database. The construction of EvolvingQA is automated with our pipeline using large language models. We uncover that existing continual learning baselines suffer from updating and removing outdated knowledge. Our analysis suggests that models fail to rectify knowledge due to small weight gradients. In addition, we elucidate that language models particularly struggle to reflect the change of numerical or temporal information. Our work aims to model the dynamic nature of real-world information, suggesting faithful evaluations of the evolution-adaptability of language models. Our data construction code and dataset files are available at https://github.com/kimyuji/EvolvingQA_benchmark.

2023

pdf
HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning
Yongjin Yang | Joonkee Kim | Yujin Kim | Namgyu Ho | James Thorne | Se-Young Yun
Findings of the Association for Computational Linguistics: EMNLP 2023

With the proliferation of social media, accurate detection of hate speech has become critical to ensure safety online. To combat nuanced forms of hate speech, it is important to identify and thoroughly explain hate speech to help users understand its harmful effects. Recent benchmarks have attempted to tackle this issue by training generative models on free-text annotations of implications in hateful text. However, we find significant reasoning gaps in the existing annotations schemes, which may hinder the supervision of detection models. In this paper, we introduce a hate speech detection framework, **HARE**, which harnesses the reasoning capabilities of large language models (LLMs) to fill these gaps in explanations of hate speech, thus enabling effective supervision of detection models. Experiments on SBIC and Implicit Hate benchmarks show that our method, using model-generated data, consistently outperforms baselines, using existing free-text human annotations. Analysis demonstrates that our method enhances the explanation quality of trained models and improves generalization to unseen datasets. Our code is available at https://github.com/joonkeekim/hare-hate-speech.git.

pdf
NASH: A Simple Unified Framework of Structured Pruning for Accelerating Encoder-Decoder Language Models
Jongwoo Ko | Seungjoon Park | Yujin Kim | Sumyeong Ahn | Du-Seong Chang | Euijai Ahn | Se-Young Yun
Findings of the Association for Computational Linguistics: EMNLP 2023

Structured pruning methods have proven effective in reducing the model size and accelerating inference speed in various network architectures such as Transformers. Despite the versatility of encoder-decoder models in numerous NLP tasks, the structured pruning methods on such models are relatively less explored compared to encoder-only models. In this study, we investigate the behavior of the structured pruning of the encoder-decoder models in the decoupled pruning perspective of the encoder and decoder component, respectively. Our findings highlight two insights: (1) the number of decoder layers is the dominant factor of inference speed, and (2) low sparsity in the pruned encoder network enhances generation quality. Motivated by these findings, we propose a simple and effective framework, NASH, that narrows the encoder and shortens the decoder networks of encoder-decoder models. Extensive experiments on diverse generation and inference tasks validate the effectiveness of our method in both speedup and output quality.