Yujia Bao


2025

pdf bib
Enhancing Retrieval Systems with Inference-Time Logical Reasoning
Felix Faltings | Wei Wei | Yujia Bao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Traditional retrieval methods rely on transforming user queries into vector representations and retrieving documents based on cosine similarity within an embedding space. While efficient and scalable, this approach often fails to handle complex queries involving logical constructs such as negations, conjunctions, and disjunctions. In this paper, we propose a novel inference-time logical reasoning framework that explicitly incorporates logical reasoning into the retrieval process. Our method extracts logical reasoning structures from natural language queries and then composes the individual cosine similarity matching scores to formulate the final document scores. This approach enables the retrieval process to handle complex logical reasoning without compromising computational efficiency. Our results on both synthetic and real-world benchmarks demonstrate that the proposed method consistently outperforms traditional retrieval methods across different models and datasets, significantly improving retrieval performance for complex queries.

pdf bib
Enhancing Retrieval for ESGLLM via ESG-CID: A Disclosure Content Index Finetuning Dataset for Mapping GRI and ESRS
Shafiuddin Rehan Ahmed | Ankit Shah | Quan Hung Tran | Vivek Khetan | Sukryool Kang | Ankit Mehta | Yujia Bao | Wei Wei
Proceedings of the 2nd Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2025)

Climate change has intensified the need for transparency and accountability in organizational practices, making Environmental, Social, and Governance (ESG) reporting increasingly crucial. Frameworks like the Global Reporting Initiative (GRI) and the new European Sustainability Reporting Standards (ESRS) aim to standardize ESG reporting, yet generating comprehensive reports remains challenging due to the considerable length of ESG documents and variability in company reporting styles. To facilitate ESG report automation, Retrieval-Augmented Generation (RAG) systems can be employed, but their development is hindered by a lack of labeled data suitable for training retrieval models. In this paper, we leverage an underutilized source of weak supervision—the disclosure content index found in past ESG reports—to create a comprehensive dataset, ESG-CID, for both GRI and ESRS standards. By extracting mappings between specific disclosure requirements and corresponding report sections, and refining them using a Large Language Model as a judge, we generate a robust training and evaluation set. We benchmark popular embedding models on this dataset and show that fine-tuning BERT-based models can outperform commercial embeddings and leading public models, even under temporal data splits for cross-report style transfer from GRI to ESRS.

2018

pdf bib
Deriving Machine Attention from Human Rationales
Yujia Bao | Shiyu Chang | Mo Yu | Regina Barzilay
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Attention-based models are successful when trained on large amounts of data. In this paper, we demonstrate that even in the low-resource scenario, attention can be learned effectively. To this end, we start with discrete human-annotated rationales and map them into continuous attention. Our central hypothesis is that this mapping is general across domains, and thus can be transferred from resource-rich domains to low-resource ones. Our model jointly learns a domain-invariant representation and induces the desired mapping between rationales and attention. Our empirical results validate this hypothesis and show that our approach delivers significant gains over state-of-the-art baselines, yielding over 15% average error reduction on benchmark datasets.