Yuhong Chou


2025

pdf bib
MMDEND: Dendrite-Inspired Multi-Branch Multi-Compartment Parallel Spiking Neuron for Sequence Modeling
Kexin Wang | Yuhong Chou | Di Shang | Shijie Mei | Jiahong Zhang | Yanbin Huang | Man Yao | Bo Xu | Guoqi Li
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Vanilla spiking neurons are simplified from complex biological neurons with dendrites, soma, and synapses, into single somatic compartments. Due to limitations in performance and training efficiency, vanilla spiking neurons face significant challenges in modeling long sequences. In terms of performance, the oversimplified dynamics of spiking neurons omit long-term temporal dependencies. Additionally, the long-tail membrane potential distribution and binary activation discretization errors further limit their capacity to model long sequences. In terms of efficiency, the serial mechanism of spiking neurons leads to excessively long training times for long sequences. Though parallel spiking neurons are an efficient solution, their number of parameters is often tied to the hidden dimension or sequence length, which makes current parallel neurons unsuitable for large architectures. To address these issues, we propose **MMDEND**: a Multi-Branch Multi-Compartment Parallel Spiking Dendritic Neuron. Its proportion-adjustable multi-branch, multi-compartment structure enables long-term temporal dependencies. Additionally, we introduce a Scaling-Shifting Integer Firing (SSF) mechanism that fits the long-tail membrane potential distribution, retains efficiency, and mitigates discretization errors. Compared with parallel neurons, MMDEND achieves better long-sequence modeling capability with fewer parameters and lower energy consumption. Visualization also confirms that the SSF mechanism effectively fits long-tail distributions.