Yuhang Cao
2025
InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model
Yuhang Zang
|
Xiaoyi Dong
|
Pan Zhang
|
Yuhang Cao
|
Ziyu Liu
|
Shengyuan Ding
|
Shenxi Wu
|
Yubo Ma
|
Haodong Duan
|
Wenwei Zhang
|
Kai Chen
|
Dahua Lin
|
Jiaqi Wang
Findings of the Association for Computational Linguistics: ACL 2025
Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data.
Towards Storage-Efficient Visual Document Retrieval: An Empirical Study on Reducing Patch-Level Embeddings
Yubo Ma
|
Jinsong Li
|
Yuhang Zang
|
Xiaobao Wu
|
Xiaoyi Dong
|
Pan Zhang
|
Yuhang Cao
|
Haodong Duan
|
Jiaqi Wang
|
Yixin Cao
|
Aixin Sun
Findings of the Association for Computational Linguistics: ACL 2025
Despite the strong performance of ColPali/ColQwen2 in Visualized Document Retrieval (VDR), its patch-level embedding approach leads to excessive memory usage. This empirical study investigates methods to reduce patch embeddings per page while minimizing performance degradation. We evaluate two token-reduction strategies: token pruning and token merging. Regarding token pruning, we surprisingly observe that a simple random strategy outperforms other sophisticated pruning methods, though still far from satisfactory. Further analysis reveals that pruning is inherently unsuitable for VDR as it requires removing certain page embeddings without query-specific information. Turning to token merging (more suitable for VDR), we search for the optimal combinations of merging strategy across three dimensions and develops Light-ColPali/ColQwen2. It maintains 98.2% of retrieval performance with only 11.8% of original memory usage, and preserves 94.6% effectiveness at 2% memory footprint. We expect our empirical findings and resulting Light-ColPali/ColQwen2 offer valuable insights and establish a competitive baseline for future efficient-VDR research.
Search
Fix author
Co-authors
- Xiaoyi Dong 2
- Haodong Duan 2
- Yubo Ma 2
- Jiaqi Wang 2
- Yuhang Zang 2
- show all...