Yuanyi Ren


2025

pdf bib
Generative Psycho-Lexical Approach for Constructing Value Systems in Large Language Models
Haoran Ye | TianZe Zhang | Yuhang Xie | Liyuan Zhang | Yuanyi Ren | Xin Zhang | Guojie Song
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Values are core drivers of individual and collective perception, cognition, and behavior. Value systems, such as Schwartz’s Theory of Basic Human Values, delineate the hierarchy and interplay among these values, enabling cross-disciplinary investigations into decision-making and societal dynamics. Recently, the rise of Large Language Models (LLMs) has raised concerns regarding their elusive intrinsic values. Despite growing efforts in evaluating, understanding, and aligning LLM values, a psychologically grounded LLM value system remains underexplored. This study addresses the gap by introducing the Generative Psycho-Lexical Approach (GPLA), a scalable, adaptable, and theoretically informed method for constructing value systems. Leveraging GPLA, we propose a psychologically grounded five-factor value system tailored for LLMs. For systematic validation, we present three benchmarking tasks that integrate psychological principles with cutting-edge AI priorities. Our results reveal that the proposed value system meets standard psychological criteria, better captures LLM values, improves LLM safety prediction, and enhances LLM alignment, when compared to the canonical Schwartz’s values.

pdf bib
Large Language Models for Predictive Analysis: How Far Are They?
Qin Chen | Yuanyi Ren | Xiaojun Ma | Yuyang Shi
Findings of the Association for Computational Linguistics: ACL 2025

Predictive analysis is a cornerstone of modern decision-making, with applications in various domains. Large Language Models (LLMs) have emerged as powerful tools in enabling nuanced, knowledge-intensive conversations, thus aiding in complex decision-making tasks. With the burgeoning expectation to harness LLMs for predictive analysis, there is an urgent need to systematically assess their capability in this domain. However, there are no relevant evaluations in existing studies. To bridge this gap, we introduce the PredictiQ benchmark, which integrates 1130 sophisticated predictive analysis queries originating from 44 real-world datasets of 8 diverse fields. We design an evaluation protocol considering text analysis, code generation, and their alignment. Twelve renowned LLMs are evaluated, offering insights into their practical use in predictive analysis.

2024

pdf bib
ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models
Yuanyi Ren | Haoran Ye | Hanjun Fang | Xin Zhang | Guojie Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies. This development underscores the urgent need for evaluating value orientations and understanding of LLMs to ensure their responsible integration into public-facing applications. This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and understanding in LLMs. ValueBench collects data from 44 established psychometric inventories, encompassing 453 multifaceted value dimensions. We propose an evaluation pipeline grounded in realistic human-AI interactions to probe value orientations, along with novel tasks for evaluating value understanding in an open-ended value space. With extensive experiments conducted on six representative LLMs, we unveil their shared and distinctive value orientations and exhibit their ability to approximate expert conclusions in value-related extraction and generation tasks.