Youssef Nafea


2025

pdf bib
Palm: A Culturally Inclusive and Linguistically Diverse Dataset for Arabic LLMs
Fakhraddin Alwajih | Abdellah El Mekki | Samar Mohamed Magdy | AbdelRahim A. Elmadany | Omer Nacar | El Moatez Billah Nagoudi | Reem Abdel-Salam | Hanin Atwany | Youssef Nafea | Abdulfattah Mohammed Yahya | Rahaf Alhamouri | Hamzah A. Alsayadi | Hiba Zayed | Sara Shatnawi | Serry Sibaee | Yasir Ech-chammakhy | Walid Al-Dhabyani | Marwa Mohamed Ali | Imen Jarraya | Ahmed Oumar El-Shangiti | Aisha Alraeesi | Mohammed Anwar AL-Ghrawi | Abdulrahman S. Al-Batati | Elgizouli Mohamed | Noha Taha Elgindi | Muhammed Saeed | Houdaifa Atou | Issam Ait Yahia | Abdelhak Bouayad | Mohammed Machrouh | Amal Makouar | Dania Alkawi | Mukhtar Mohamed | Safaa Taher Abdelfadil | Amine Ziad Ounnoughene | Anfel Rouabhia | Rwaa Assi | Ahmed Sorkatti | Mohamedou Cheikh Tourad | Anis Koubaa | Ismail Berrada | Mustafa Jarrar | Shady Shehata | Muhammad Abdul-Mageed
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As large language models (LLMs) become increasingly integrated into daily life, ensuring their cultural sensitivity and inclusivity is paramount. We introduce PALM, a year-long community-driven project covering all 22 Arab countries. The dataset contains instruction–response pairs in both Modern Standard Arabic (MSA) and dialectal Arabic (DA), spanning 20 diverse topics. Built by a team of 44 researchers across the Arab world—each an author of this paper—PALM offers a broad, inclusive perspective. We use PALM to evaluate the cultural and dialectal capabilities of several frontier LLMs, revealing notable limitations: while closed-source LLMs generally perform strongly, they still exhibit flaws, and smaller open-source models face greater challenges. Furthermore, certain countries (e.g., Egypt, the UAE) appear better represented than others (e.g., Iraq, Mauritania, Yemen). Our annotation guidelines, code, and data are publicly available for reproducibility. More information about PALM is available on our project page: https://github.com/UBC-NLP/palm.

2023

pdf bib
Can a Prediction’s Rank Offer a More Accurate Quantification of Bias? A Case Study Measuring Sexism in Debiased Language Models
Jad Doughman | Shady Shehata | Leen Al Qadi | Youssef Nafea | Fakhri Karray
Proceedings of the 4th Workshop on Evaluation and Comparison of NLP Systems

Pre-trained language models are known to inherit a plethora of contextual biases from their training data. These biases have proven to be projected onto a variety of downstream applications, making their detection and mitigation imminent. Limited research has been conducted to quantify specific bias types, such as benevolent sexism, which may be subtly present within the inferred connotations of a sentence. To this extent, our work aims to: (1) provide a benchmark of sexism sentences; (2) adapt two bias metrics: mean probability score and mean normalized rank; (3) conduct a case study to quantify and analyze sexism in base and de-biased masked language models. We find that debiasing, even in its most effective form (Auto-Debias), solely nullifies the probability score of biasing tokens, while retaining them in high ranks. Auto-Debias illustrates a 90%-96% reduction in mean probability scores from base to debiased models, while only a 3%-16% reduction in mean normalized ranks. Similar to the application of non-parametric statistical tests for data that does not follow a normal distribution, operating on the ranks of predictions rather than their probability scores offers a more representative bias measure.