Yiyang Jiang
2025
SDBench: A Survey-based Domain-specific LLM Benchmarking and Optimization Framework
Cheng Guo
|
Hu Kai
|
Shuxian Liang
|
Yiyang Jiang
|
Yi Gao
|
Xian-Sheng Hua
|
Wei Dong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The rapid advancement of large language models (LLMs) in recent years has made it feasible to establish domain-specific LLMs for specialized fields. However, in practical development, acquiring domain-specific knowledge often requires a significant amount of professional expert manpower. Moreover, even when domain-specific data is available, the lack of a unified methodology for benchmark dataset establishment often results in uneven data distribution. This imbalance can lead to an inaccurate assessment of the true model capabilities during the evaluation of domain-specific LLMs. To address these challenges, we introduce **SDBench**, a generic framework for generating evaluation datasets for domain-specific LLMs. This method is also applicable for establishing the LLM instruction datasets. It significantly reduces the reliance on expert manpower while ensuring that the collected data is uniformly distributed. To validate the effectiveness of this framework, we also present the **BridgeBench**, a novel benchmark for bridge engineering knowledge, and the **BridgeGPT**, the first LLM specialized in bridge engineering, which can solve bridge engineering tasks.
Removal of Hallucination on Hallucination: Debate-Augmented RAG
Wentao Hu
|
Wengyu Zhang
|
Yiyang Jiang
|
Chen Jason Zhang
|
Xiaoyong Wei
|
Li Qing
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Retrieval-Augmented Generation (RAG) enhances factual accuracy by integrating external knowledge, yet it introduces a critical issue: erroneous or biased retrieval can mislead generation, compounding hallucinations, a phenomenon we term Hallucination on Hallucination. To address this, we propose Debate-Augmented RAG (DRAG), a training-free framework that integrates Multi-Agent Debate (MAD) mechanisms into both retrieval and generation stages. In retrieval, DRAG employs structured debates among proponents, opponents, and judges to refine retrieval quality and ensure factual reliability. In generation, DRAG introduces asymmetric information roles and adversarial debates, enhancing reasoning robustness and mitigating factual inconsistencies. Evaluations across multiple tasks demonstrate that DRAG improves retrieval reliability, reduces RAG-induced hallucinations, and significantly enhances overall factual accuracy. Our code is available at https://github.com/Huenao/Debate-Augmented-RAG.
Search
Fix author