YiQiu Guo


2025

pdf bib
Towards Omni-RAG: Comprehensive Retrieval-Augmented Generation for Large Language Models in Medical Applications
Zhe Chen | Yusheng Liao | Shuyang Jiang | Pingjie Wang | YiQiu Guo | Yanfeng Wang | Yu Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models hold promise for addressing medical challenges, such as medical diagnosis reasoning, research knowledge acquisition, clinical decision-making, and consumer health inquiry support. However, they often generate hallucinations due to limited medical knowledge. Incorporating external knowledge is therefore critical, which necessitates multi-source knowledge acquisition. We address this challenge by framing it as a source planning problem, which is to formulate context-appropriate queries tailored to the attributes of diverse sources. Existing approaches either overlook source planning or fail to achieve it effectively due to misalignment between the model’s expectation of the sources and their actual content. To bridge this gap, we present MedOmniKB, a repository comprising multigenre and multi-structured medical knowledge sources. Leveraging these sources, we propose the Source Planning Optimisation method, which enhances multi-source utilisation. Our approach involves enabling an expert model to explore and evaluate potential plans while training a smaller model to learn source alignment. Experimental results demonstrate that our method substantially improves multi-source planning performance, enabling the optimised small model to achieve state-of-the-art results in leveraging diverse medical knowledge sources.

2024

pdf bib
DictLLM: Harnessing Key-Value Data Structures with Large Language Models for Enhanced Medical Diagnostics
YiQiu Guo | Yuchen Yang | Ya Zhang | Yu Wang | Yanfeng Wang
Findings of the Association for Computational Linguistics: ACL 2024

Structured data offers an efficient means of organizing information. Exsisting text-serialization based methods for processing structured data using large language models (LLMs) are not designed to explicitly capture the heterogeneity of structured data. Such methods are suboptimal for LLMs to process structured data, and may lead to large input token size and poor robustness to input perturbation. In this paper, we propose a novel framework called DictLLM, which is an efficient and effective framework for the modeling of medical lab report to deal with the report-assisted diagnosis generation task. DictLLM introduce 1) group positional encoding to maintain the permutation invariance, 2) hierarchical attention bias to capture the inductive bias of structured data, and 3) a optimal transport alignment layer to align the embeddings generated by the dict encoder with the LLM, producing a list of fixed-length virtual tokens. We conduct experiments with multiple LLM models on a large-scale real-world medical lab report dataset for automatic diagnosis generation. The results show that our proposed framework outperforms the baseline methods and few-shot GPT-4 in terms of both Rouge-L and Knowledge F1 score. We also conduct multiple experiments and analyze the scalability and robustness of our proposed framework, demonstrating the superiority of our method in modeling the heterogeneous structure of medical dictionaries data.