Yilei Jiang


2025

pdf bib
HiddenDetect: Detecting Jailbreak Attacks against Multimodal Large Language Models via Monitoring Hidden States
Yilei Jiang | Xinyan Gao | Tianshuo Peng | Yingshui Tan | Xiaoyong Zhu | Bo Zheng | Xiangyu Yue
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The integration of additional modalities increases the susceptibility of large vision-language models (LVLMs) to safety risks, such as jailbreak attacks, compared to their language-only counterparts. While existing research primarily focuses on post-hoc alignment techniques, the underlying safety mechanisms within LVLMs remain largely unexplored. In this work , we investigate whether LVLMs inherently encode safety-relevant signals within their internal activations during inference. Our findings reveal that LVLMs exhibit distinct activation patterns when processing unsafe prompts, which can be leveraged to detect and mitigate adversarial inputs without requiring extensive fine-tuning. Building on this insight, we introduce HiddenDetect, a novel tuning-free framework that harnesses internal model activations to enhance safety. Experimental results show that HiddenDetect surpasses state-of-the-art methods in detecting jailbreak attacks against LVLMs. By utilizing intrinsic safety-aware patterns, our method provides an efficient and scalable solution for strengthening LVLM robustness against multimodal threats. Our code and data will be released publicly.

2021

pdf bib
Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation
Shizhe Diao | Ruijia Xu | Hongjin Su | Yilei Jiang | Yan Song | Tong Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Large pre-trained models such as BERT are known to improve different downstream NLP tasks, even when such a model is trained on a generic domain. Moreover, recent studies have shown that when large domain-specific corpora are available, continued pre-training on domain-specific data can further improve the performance of in-domain tasks. However, this practice requires significant domain-specific data and computational resources which may not always be available. In this paper, we aim to adapt a generic pretrained model with a relatively small amount of domain-specific data. We demonstrate that by explicitly incorporating multi-granularity information of unseen and domain-specific words via the adaptation of (word based) n-grams, the performance of a generic pretrained model can be greatly improved. Specifically, we introduce a Transformer-based Domain-aware N-gram Adaptor, T-DNA, to effectively learn and incorporate the semantic representation of different combinations of words in the new domain. Experimental results illustrate the effectiveness of T-DNA on eight low-resource downstream tasks from four domains. We show that T-DNA is able to achieve significant improvements compared to existing methods on most tasks using limited data with lower computational costs. Moreover, further analyses demonstrate the importance and effectiveness of both unseen words and the information of different granularities. Our code is available at https://github.com/shizhediao/T-DNA.