Xuezhi Cao


2025

pdf bib
Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration
Shao Zhang | Xihuai Wang | Wenhao Zhang | Chaoran Li | Junru Song | Tingyu Li | Lin Qiu | Xuezhi Cao | Xunliang Cai | Wen Yao | Weinan Zhang | Xinbing Wang | Ying Wen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Agents built on large language models (LLMs) have excelled in turn-by-turn human-AI collaboration but struggle with simultaneous tasks requiring real-time interaction. Latency issues and the challenge of inferring variable human strategies hinder their ability to make autonomous decisions without explicit instructions. Through experiments with current independent *System 1* and *System 2* methods, we validate the necessity of using Dual Process Theory (DPT) in real-time tasks. We propose DPT-Agent, a novel language agent framework that integrates *System 1* and *System 2* for efficient real-time simultaneous human-AI collaboration. DPT-Agent’s *System 1* uses a Finite-state Machine (FSM) and code-as-policy for fast, intuitive, and controllable decision-making. DPT-Agent’s *System 2* integrates Theory of Mind (ToM) and asynchronous reflection to infer human intentions and perform reasoning-based autonomous decisions. We demonstrate the effectiveness of DPT-Agent through further experiments with rule-based agents and human collaborators, showing significant improvements over mainstream LLM-based frameworks. To the best of our knowledge, DPT-Agent is the first language agent framework that achieves successful real-time simultaneous human-AI collaboration autonomously. Code of DPT-Agent can be found in https://github.com/sjtu-marl/DPT-Agent.

pdf bib
Why Not Act on What You Know? Unleashing Safety Potential of LLMs via Self-Aware Guard Enhancement
Peng Ding | Jun Kuang | ZongYu Wang | Xuezhi Cao | Xunliang Cai | Jiajun Chen | Shujian Huang
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) have shown impressive capabilities across various tasks but remain vulnerable to meticulously crafted jailbreak attacks. In this paper, we identify a critical safety gap: while LLMs are adept at detecting jailbreak prompts, they often produce unsafe responses when directly processing these inputs. Inspired by this insight, we propose SAGE(Self-Aware Guard Enhancement), a training-free defense strategy designed to align LLMs’ strong safety discrimination performance with their relatively weaker safety generation ability. SAGE consists of two core components: a Discriminative Analysis Module and a Discriminative Response Module, enhancing resilience against sophisticated jailbreak attempts through flexible safety discrimination instructions. Extensive experiments demonstrate SAGE’s effectiveness and robustness across various open-source and closed-source LLMs of different sizes and architectures, achieving an average 99% defense success rate against numerous complex and covert jailbreak methods while maintaining helpfulness on general benchmarks. We further conduct mechanistic interpretability analysis through hidden states and attention distributions, revealing the underlying mechanisms of this detection-generation discrepancy. Our work thus contributes to developing future LLMs with coherent safety awareness and generation behavior. Our code and datasets are publicly available at https://github.com/NJUNLP/SAGE.

2024

pdf bib
Conjoin after Decompose: Improving Few-Shot Performance of Named Entity Recognition
Chengcheng Han | Renyu Zhu | Jun Kuang | Fengjiao Chen | Xiang Li | Ming Gao | Xuezhi Cao | Yunsen Xian
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Prompt-based methods have been widely used in few-shot named entity recognition (NER). In this paper, we first conduct a preliminary experiment and observe that the key to affecting the performance of prompt-based NER models is the capability to detect entity boundaries. However, most existing models fail to boost such capability. To solve the issue, we propose a novel model, ParaBART, which consists of a BART encoder and a specially designed parabiotic decoder. Specifically, the parabiotic decoder includes two BART decoders and a conjoint module. The two decoders are responsible for entity boundary detection and entity type classification, respectively. They are connected by the conjoint module, which is used to replace unimportant tokens’ embeddings in one decoder with the average embedding of all the tokens in the other. We further present a novel boundary expansion strategy to enhance the model’s capability in entity type classification. Experimental results show that ParaBART can achieve significant performance gains over state-of-the-art competitors.

pdf bib
A Wolf in Sheep’s Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily
Peng Ding | Jun Kuang | Dan Ma | Xuezhi Cao | Yunsen Xian | Jiajun Chen | Shujian Huang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs), such as ChatGPT and GPT-4, are designed to provide useful and safe responses. However, adversarial prompts known as ‘jailbreaks’ can circumvent safeguards, leading LLMs to generate potentially harmful content. Exploring jailbreak prompts can help to better reveal the weaknesses of LLMs and further steer us to secure them. Unfortunately, existing jailbreak methods either suffer from intricate manual design or require optimization on other white-box models, which compromises either generalization or efficiency. In this paper, we generalize jailbreak prompt attacks into two aspects: (1) Prompt Rewriting and (2) Scenario Nesting. Based on this, we propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts. Extensive experiments demonstrate that ReNeLLM significantly improves the attack success rate while greatly reducing the time cost compared to existing baselines. Our study also reveals the inadequacy of current defense methods in safeguarding LLMs. Finally, we analyze the failure of LLMs defense from the perspective of prompt execution priority, and propose corresponding defense strategies. We hope that our research can catalyze both the academic community and LLMs developers towards the provision of safer and more regulated LLMs. The code is available at https://github.com/NJUNLP/ReNeLLM.

2023

pdf bib
Transferable and Efficient: Unifying Dynamic Multi-Domain Product Categorization
Shansan Gong | Zelin Zhou | Shuo Wang | Fengjiao Chen | Xiujie Song | Xuezhi Cao | Yunsen Xian | Kenny Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

As e-commerce platforms develop different business lines, a special but challenging product categorization scenario emerges, where there are multiple domain-specific category taxonomies and each of them evolves dynamically over time. In order to unify the categorization process and ensure efficiency, we propose a two-stage taxonomy-agnostic framework that relies solely on calculating the semantic relatedness between product titles and category names in the vector space. To further enhance domain transferability and better exploit cross-domain data, we design two plug-in modules: a heuristic mapping scorer and a pretrained contrastive ranking module with the help of meta concepts, which represent keyword knowledge shared across domains. Comprehensive offline experiments show that our method outperforms strong baselineson three dynamic multi-domain product categorization (DMPC) tasks,and online experiments reconfirm its efficacy with a5% increase on seasonal purchase revenue. Related datasets will be released.

2020

pdf bib
Table Fact Verification with Structure-Aware Transformer
Hongzhi Zhang | Yingyao Wang | Sirui Wang | Xuezhi Cao | Fuzheng Zhang | Zhongyuan Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Verifying fact on semi-structured evidence like tables requires the ability to encode structural information and perform symbolic reasoning. Pre-trained language models trained on natural language could not be directly applied to encode tables, because simply linearizing tables into sequences will lose the cell alignment information. To better utilize pre-trained transformers for table representation, we propose a Structure-Aware Transformer (SAT), which injects the table structural information into the mask of the self-attention layer. A method to combine symbolic and linguistic reasoning is also explored for this task. Our method outperforms baseline with 4.93% on TabFact, a large scale table verification dataset.