2025
pdf
bib
abs
Robust Data Watermarking in Language Models by Injecting Fictitious Knowledge
Xinyue Cui
|
Johnny Wei
|
Swabha Swayamdipta
|
Robin Jia
Findings of the Association for Computational Linguistics: ACL 2025
Data watermarking in language models injects traceable signals, such as specific token sequences or stylistic patterns, into copyrighted text, allowing copyright holders to track and verify training data ownership. Previous data watermarking techniques primarily focus on effective memorization after pretraining, while overlooking challenges that arise in other stages of the LLM pipeline, such as the risk of watermark filtering during data preprocessing, or potential forgetting through post-training, or verification difficulties due to API-only access. We propose a novel data watermarking approach that injects coherent and plausible yet fictitious knowledge into training data using generated passages describing a fictitious entity and its associated attributes. Our watermarks are designed to be memorized by the LLM through seamlessly integrating in its training data, making them harder to detect lexically during preprocessing. We demonstrate that our watermarks can be effectively memorized by LLMs, and that increasing our watermarks’ density, length, and diversity of attributes strengthens their memorization. We further show that our watermarks remain robust throughout LLM development, maintaining their effectiveness after continual pretraining and supervised finetuning. Finally, we show that our data watermarks can be evaluated even under API-only access via question answering.
pdf
bib
abs
Robust Data Watermarking in Language Models by Injecting Fictitious Knowledge
Xinyue Cui
|
Johnny Wei
|
Swabha Swayamdipta
|
Robin Jia
Proceedings of the First Workshop on Large Language Model Memorization (L2M2)
Data watermarking in language models injects traceable signals, such as specific token sequences or stylistic patterns, into copyrighted text, allowing copyright holders to track and verify training data ownership. Previous data watermarking techniques primarily focus on effective memorization during pretraining, while overlooking challenges that arise in other stages of the LLM lifecycle, such as the risk of watermark filtering during data preprocessing and verification difficulties due to API-only access. To address these challenges, we propose a novel data watermarking approach that injects plausible yet fictitious knowledge into training data using generated passages describing a fictitious entity and its associated attributes. Our watermarks are designed to be memorized by the LLM through seamlessly integrating in its training data, making them harder to detect lexically during preprocessing. We demonstrate that our watermarks can be effectively memorized by LLMs, and that increasing our watermarks’ density, length, and diversity of attributes strengthens their memorization. We further show that our watermarks remain effective after continual pretraining and supervised finetuning. Finally, we show that our data watermarks can be evaluated even under API-only access via question answering.
2024
pdf
bib
abs
Annotating FrameNet via Structure-Conditioned Language Generation
Xinyue Cui
|
Swabha Swayamdipta
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Despite the remarkable generative capabilities of language models in producing naturalistic language, their effectiveness on explicit manipulation and generation of linguistic structures remain understudied. In this paper, we investigate the task of generating new sentences preserving a given semantic structure, following the FrameNet formalism. We propose a framework to produce novel frame-semantically annotated sentences following an overgenerate-and-filter approach. Our results show that conditioning on rich, explicit semantic information tends to produce generations with high human acceptance, under both prompting and finetuning. Our generated frame-semantic structured annotations are effective at training data augmentation for frame-semantic role labeling in low-resource settings; however, we do not see benefits under higher resource settings. Our study concludes that while generating high-quality, semantically rich data might be within reach, the downstream utility of such generations remains to be seen, highlighting the outstanding challenges with automating linguistic annotation tasks.
2022
pdf
bib
abs
PSSAT: A Perturbed Semantic Structure Awareness Transferring Method for Perturbation-Robust Slot Filling
Guanting Dong
|
Daichi Guo
|
Liwen Wang
|
Xuefeng Li
|
Zechen Wang
|
Chen Zeng
|
Keqing He
|
Jinzheng Zhao
|
Hao Lei
|
Xinyue Cui
|
Yi Huang
|
Junlan Feng
|
Weiran Xu
Proceedings of the 29th International Conference on Computational Linguistics
Most existing slot filling models tend to memorize inherent patterns of entities and corresponding contexts from training data. However, these models can lead to system failure or undesirable outputs when being exposed to spoken language perturbation or variation in practice. We propose a perturbed semantic structure awareness transferring method for training perturbation-robust slot filling models. Specifically, we introduce two MLM-based training strategies to respectively learn contextual semantic structure and word distribution from unsupervised language perturbation corpus. Then, we transfer semantic knowledge learned from upstream training procedure into the original samples and filter generated data by consistency processing. These procedures aims to enhance the robustness of slot filling models. Experimental results show that our method consistently outperforms the previous basic methods and gains strong generalization while preventing the model from memorizing inherent patterns of entities and contexts.