2025
pdf
bib
abs
Multimodal Coreference Resolution for Chinese Social Media Dialogues: Dataset and Benchmark Approach
Xingyu Li
|
Chen Gong
|
Guohong Fu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multimodal coreference resolution (MCR) aims to identify mentions referring to the same entity across different modalities, such as text and visuals, and is essential for understanding multimodal content. In the era of rapidly growing multimodal content and social media, MCR is particularly crucial for interpreting user interactions and bridging text-visual references to improve communication and personalization. However, MCR research for real-world dialogues remains unexplored due to the lack of sufficient data resources. To address this gap, we introduce TikTalkCoref, the first Chinese multimodal coreference dataset for social media in real-world scenarios, derived from the popular Douyin short-video platform. This dataset pairs short videos with corresponding textual dialogues from user comments and includes manually annotated coreference clusters for both person mentions in the text and the coreferential person head regions in the corresponding video frames. We also present an effective benchmark approach for MCR, focusing on the celebrity domain, and conduct extensive experiments on our dataset, providing reliable benchmark results for this newly constructed dataset. We release the TikTalkCoref dataset to facilitate future research on MCR for real-world social media dialogues at https://github.com/lxystaruni/TikTalkCoref.
2024
pdf
bib
abs
MODDP: A Multi-modal Open-domain Chinese Dataset for Dialogue Discourse Parsing
Chen Gong
|
DeXin Kong
|
Suxian Zhao
|
Xingyu Li
|
Guohong Fu
Findings of the Association for Computational Linguistics: ACL 2024
Dialogue discourse parsing (DDP) aims to capture the relations between utterances in the dialogue. In everyday real-world scenarios, dialogues are typically multi-modal and cover open-domain topics. However, most existing widely used benchmark datasets for DDP contain only textual modality and are domain-specific. This makes it challenging to accurately and comprehensively understand the dialogue without multi-modal clues, and prevents them from capturing the discourse structures of the more prevalent daily conversations. This paper proposes MODDP, the first multi-modal Chinese discourse parsing dataset derived from open-domain daily dialogues, consisting 864 dialogues and 18,114 utterances, accompanied by 12.7 hours of video clips. We present a simple yet effective benchmark approach for multi-modal DDP. Through extensive experiments, we present several benchmark results based on MODDP. The significant improvement in performance from introducing multi-modalities into the original textual unimodal DDP model demonstrates the necessity of integrating multi-modalities into DDP.
2023
pdf
bib
abs
Improving Contrastive Learning of Sentence Embeddings with Focal InfoNCE
Pengyue Hou
|
Xingyu Li
Findings of the Association for Computational Linguistics: EMNLP 2023
The recent success of SimCSE has greatly advanced state-of-the-art sentence representations. However, the original formulation of SimCSE does not fully exploit the potential of hard negative samples in contrastive learning. This study introduces an unsupervised contrastive learning framework that combines SimCSE with hard negative mining, aiming to enhance the quality of sentence embeddings. The proposed focal-InfoNCE function introduces self-paced modulation terms in the contrastive objective, downweighting the loss associated with easy negatives and encouraging the model focusing on hard negatives. Experimentation on various STS benchmarks shows that our method improves sentence embeddings in terms of Spearman’s correlation and representation alignment and uniformity.
2020
pdf
bib
abs
Research Replication Prediction Using Weakly Supervised Learning
Tianyi Luo
|
Xingyu Li
|
Hainan Wang
|
Yang Liu
Findings of the Association for Computational Linguistics: EMNLP 2020
Knowing whether a published research result can be replicated is important. Carrying out direct replication of published research incurs a high cost. There are efforts tried to use machine learning aided methods to predict scientific claims’ replicability. However, existing machine learning aided approaches use only hand-extracted statistics features such as p-value, sample size, etc. without utilizing research papers’ text information and train only on a very small size of annotated data without making the most use of a large number of unlabeled articles. Therefore, it is desirable to develop effective machine learning aided automatic methods which can automatically extract text information as features so that we can benefit from Natural Language Processing techniques. Besides, we aim for an approach that benefits from both labeled and the large number of unlabeled data. In this paper, we propose two weakly supervised learning approaches that use automatically extracted text information of research papers to improve the prediction accuracy of research replication using both labeled and unlabeled datasets. Our experiments over real-world datasets show that our approaches obtain much better prediction performance compared to the supervised models utilizing only statistic features and a small size of labeled dataset. Further, we are able to achieve an accuracy of 75.76% for predicting the replicability of research.
2019
pdf
bib
abs
End-to-End Open-Domain Question Answering with BERTserini
Wei Yang
|
Yuqing Xie
|
Aileen Lin
|
Xingyu Li
|
Luchen Tan
|
Kun Xiong
|
Ming Li
|
Jimmy Lin
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)
We demonstrate an end-to-end question answering system that integrates BERT with the open-source Anserini information retrieval toolkit. In contrast to most question answering and reading comprehension models today, which operate over small amounts of input text, our system integrates best practices from IR with a BERT-based reader to identify answers from a large corpus of Wikipedia articles in an end-to-end fashion. We report large improvements over previous results on a standard benchmark test collection, showing that fine-tuning pretrained BERT with SQuAD is sufficient to achieve high accuracy in identifying answer spans.