Xingcheng Yao


2025

pdf bib
V-ALPHASOCIAL: Benchmark and Self-Reflective Chain-of-Thought Generation for Visual Social Commonsense Reasoning
Zongyu Lin | Zhikun Xu | Xiaohan Song | Yixin Wan | Xingcheng Yao | Tsung-Han Lin | Selina Song | Pranav Subbaraman | Ben Zhou | Kai-Wei Chang | Yizhou Sun
Findings of the Association for Computational Linguistics: ACL 2025

Social commonsense reasoning naturally involves both the verbal and non-verbal cues of a social interaction. It is important for Large Vision-Language Models (VLMs) to leverage both textual and visual information in performing tasks like social understanding and reasoning. However, while current LLMs have shown good social reasoning capabilities in textual context, whether they can effectively incorporate visual information in social comprehension remains under-explored. To narrow the gap, we first construct and propose a benchmark: V-Social, featuring well-aligned text and visual content, tailored to assess visual social commonsense for multimodal foundation models. Through experimenting with V-Social, we find that even the most advanced VLM, GPT-4o, often falls short in social commonsense reasoning. This highlights the critical need to enhance the social grounding of VLMs. One major obstacle for improving this is the lack of high-quality data with good reasoning process. To overcome this obstacle, we introduce V-AlphaSocial, a novel method that generates high-quality chain-of-thought reasoning paths from unlabeled data. We design a visual reasoning reward model to improve VLM, and then iteratively refine both the VLM and the reward model. Our extensive analysis showcases how our method enhances social commonsense reasoning, proposing an effective approach that facilitates deeper exploration into field.

2021

pdf bib
SimCSE: Simple Contrastive Learning of Sentence Embeddings
Tianyu Gao | Xingcheng Yao | Danqi Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

This paper presents SimCSE, a simple contrastive learning framework that greatly advances the state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objective, with only standard dropout used as noise. This simple method works surprisingly well, performing on par with previous supervised counterparts. We find that dropout acts as minimal data augmentation and removing it leads to a representation collapse. Then, we propose a supervised approach, which incorporates annotated pairs from natural language inference datasets into our contrastive learning framework, by using “entailment” pairs as positives and “contradiction” pairs as hard negatives. We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT base achieve an average of 76.3% and 81.6% Spearman’s correlation respectively, a 4.2% and 2.2% improvement compared to previous best results. We also show—both theoretically and empirically—that contrastive learning objective regularizes pre-trained embeddings’ anisotropic space to be more uniform, and it better aligns positive pairs when supervised signals are available.