Xiaowei Jia
2025
Unveiling Confirmation Bias in Chain-of-Thought Reasoning
Yue Wan
|
Xiaowei Jia
|
Xiang Lorraine Li
Findings of the Association for Computational Linguistics: ACL 2025
Chain-of-thought (CoT) prompting has been widely adopted to enhance the reasoning capabilities of large language models (LLMs). However, the effectiveness of CoT reasoning is inconsistent across tasks with different reasoning types. This work presents a novel perspective to understand CoT behavior through the lens of confirmation bias in cognitive psychology. Specifically, we examine how model internal beliefs, approximated by direct question-answering probabilities, affect both reasoning generation (Q → R) and reasoning-guided answer prediction (QR → A) in CoT. By decomposing CoT into a two-stage process, we conduct a thorough correlation analysis in model beliefs, rationale attributes, and stage-wise performance. Our results provide strong evidence of confirmation bias in LLMs, such that model beliefs not only skew the reasoning process but also influence how rationales are utilized for answer prediction. Furthermore, the interplay between task vulnerability to confirmation bias and the strength of beliefs also provides explanations for CoT effectiveness across reasoning tasks and models. Overall, this study provides a valuable insight for the needs of better prompting strategies that mitigate confirmation bias to enhance reasoning performance. Code is available at https://github.com/yuewan2/biasedcot.
2020
Regularized Graph Convolutional Networks for Short Text Classification
Kshitij Tayal
|
Nikhil Rao
|
Saurabh Agarwal
|
Xiaowei Jia
|
Karthik Subbian
|
Vipin Kumar
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track
Short text classification is a fundamental problem in natural language processing, social network analysis, and e-commerce. The lack of structure in short text sequences limits the success of popular NLP methods based on deep learning. Simpler methods that rely on bag-of-words representations tend to perform on par with complex deep learning methods. To tackle the limitations of textual features in short text, we propose a Graph-regularized Graph Convolution Network (GR-GCN), which augments graph convolution networks by incorporating label dependencies in the output space. Our model achieves state-of-the-art results on both proprietary and external datasets, outperforming several baseline methods by up to 6% . Furthermore, we show that compared to baseline methods, GR-GCN is more robust to noise in textual features.
Search
Fix author
Co-authors
- Saurabh Agarwal 1
- Vipin Kumar 1
- Xiang Lorraine Li 1
- Nikhil Rao 1
- Karthik Subbian 1
- show all...