Xiangbo Wu

Also published as: XiangBo Wu


2025

pdf bib
Second Language (Arabic) Acquisition of LLMs via Progressive Vocabulary Expansion
Jianqing Zhu | Huang Huang | Zhihang Lin | Juhao Liang | Zhengyang Tang | Khalid Almubarak | Mosen Alharthi | Bang An | Juncai He | Xiangbo Wu | Fei Yu | Junying Chen | Ma Zhuoheng | Yuhao Du | He Zhang | Saied Alshahrani | Emad A. Alghamdi | Lian Zhang | Ruoyu Sun | Haizhou Li | Benyou Wang | Jinchao Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper addresses the critical need for democratizing large language models (LLM) in the Arab world, a region that has seen slower progress in developing models comparable to state-of-the-art offerings like GPT-4 or GPT-3.5, due to a predominant focus on mainstream languages (e.g., English and Chinese). One practical objective for Arabic LLMs is to utilize Arabic-specific vocabulary in the tokenizer to accelerate decoding. However, using a different vocabulary often leads to degradation of the model’s learned knowledge, since many words become out-of-vocabulary (OOV) at the beginning of training. Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion, which is implemented by a modified BPE algorithm that progressively extends the Arabic subwords in its dynamic vocabulary during training, thereby balancing the OOV ratio at every stage. The ablation study demonstrated the effectiveness of Progressive Vocabulary Expansion.Moreover, AraLLaMA achieves decent performance comparable to the best Arabic LLMs across a variety of Arabic benchmarks. Our model weights are available at: https://github.com/FreedomIntelligence/AraLLaMa.

pdf bib
Huatuo-26M, a Large-scale Chinese Medical QA Dataset
Xidong Wang | Jianquan Li | Shunian Chen | Yuxuan Zhu | Xiangbo Wu | Zhiyi Zhang | Xiaolong Xu | Junying Chen | Jie Fu | Xiang Wan | Anningzhe Gao | Benyou Wang
Findings of the Association for Computational Linguistics: NAACL 2025

Large Language Models infuse newfound vigor into the advancement of the medical domain, yet the scarcity of data poses a significant bottleneck hindering community progress. In this paper, we release the largest ever medical Question Answering (QA) dataset with 26 Million QA pairs named Huatuo-26M. We benchmark many existing approaches in our dataset in terms of both retrieval and generation. We also experimentally show the benefit of the proposed dataset in many aspects: (i) it serves as a fine-tuning data for training medical Large Language Models (LLMs); (ii) it works as an external knowledge source for retrieval-augmented generation (RAG); (iii) it demonstrates transferability by enhancing zero-shot performance on other QA datasets; and (iv) it aids in training biomedical model as a pre-training corpus. Our empirical findings substantiate the dataset’s utility in these domains, thereby confirming its significance as a resource in the medical QA landscape.

2023

pdf bib
Can Language Models Make Fun? A Case Study in Chinese Comical Crosstalk
Jianquan Li | XiangBo Wu | Xiaokang Liu | Qianqian Xie | Prayag Tiwari | Benyou Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Language is the principal tool for human communication, in which humor is one of the most attractive parts. Producing natural language like humans using computers, a.k.a, Natural Language Generation (NLG), has been widely used for dialogue systems, chatbots, machine translation, as well as computer-aid creation e.g., idea generations, scriptwriting. However, the humor aspect of natural language is relatively under-investigated, especially in the age of pre-trained language models. In this work, we aim to preliminarily test *whether NLG can generate humor as humans do*. We build a largest dataset consisting of numerous **C**hinese **C**omical **C**rosstalk scripts (called **C**3 in short), which is for a popular Chinese performing art called ‘Xiangsheng’ or ‘相声’ since 1800s.We benchmark various generation approaches including training-from-scratch Seq2seq, fine-tuned middle-scale PLMs, and large-scale PLMs (with and without fine-tuning). Moreover, we also conduct a human assessment, showing that 1) *large-scale pretraining largely improves crosstalk generation quality*; and 2) *even the scripts generated from the best PLM is far from what we expect*. We conclude humor generation could be largely improved using large-scaled PLMs, but it is still in its infancy. The data and benchmarking code are publicly available in [https://github.com/anonNo2/crosstalk-generation](https://github.com/anonNo2/crosstalk-generation).

pdf bib
HuatuoGPT, Towards Taming Language Model to Be a Doctor
Hongbo Zhang | Junying Chen | Feng Jiang | Fei Yu | Zhihong Chen | Guiming Chen | Jianquan Li | Xiangbo Wu | Zhang Zhiyi | Qingying Xiao | Xiang Wan | Benyou Wang | Haizhou Li
Findings of the Association for Computational Linguistics: EMNLP 2023

In this paper, we present HuatuoGPT, a Large Language Model (LLM) for medical consultation. The core recipe of HuatuoGPT is to leverage both distilled data from **ChatGPT** and real-world data from **doctors** in the supervised fine-tuning stage. This is not only because purely using **ChatGPT**-distilled data might cause ‘model collapse’, but also because real-world data from **doctors** would be complementary to **ChatGPT**-distilled data. The responses from ChatGPT are usually detailed, well-presented, fluent, and instruction-followed, but it cannot perform like a doctor in many aspects, e.g. for interactive diagnosis. Therefore, the extra doctors’ data could tame a distilled language model to perform like doctors. To synergize the strengths of both data sources, we introduce RLMF (Reinforcement Learning from Mixed Feedback) where a reward model is trained to align the language model with the merits that both sources (ChatGPT and doctors) bring. Experimental results (in GPT-4 evaluation, human evaluation, and medical benchmark datasets) demonstrate that HuatuoGPT achieves state-of-the-art results in performing medical consultation among open-source LLMs. It is worth noting that by using additional real-world data and RLMF, the distilled language model (i.e., HuatuoGPT) outperforms its teacher model (i.e., ChatGPT) in most cases.