Xuanbo Fan


2025

pdf bib
Enhancing Retrieval-Augmented Generation via Evidence Tree Search
Hao Sun | Hengyi Cai | Yuchen Li | Xuanbo Fan | Xiaochi Wei | Shuaiqiang Wang | Yan Zhang | Dawei Yin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-Augmented Generation (RAG) is widely used to enhance Large Language Models (LLMs) by grounding responses in external knowledge. However, in real-world applications, retrievers often return lengthy documents with redundant or irrelevant content, confusing downstream readers. While evidence retrieval aims to address this by extracting key information, it faces critical challenges: (1) inability to model synergistic inter-dependencies among evidence sentences, (2) lack of supervision for evaluating multi-sentence evidence quality, and (3) computational inefficiency in navigating exponentially growing search spaces of candidate evidence sets. To tackle these challenges, we propose ETS (Evidence Tree Search), a novel framework that reformulates evidence retrieval as a dynamic tree expansion process. Our approach first constructs an evidence tree where each path represents a candidate evidence set, explicitly modeling inter-sentence dependencies through context-aware node selection. We then leverage Monte Carlo Tree Search (MCTS) to efficiently assess evidence quality and introduce an Early-Terminating Beam Search strategy to efficiently accelerate the model inference. Extensive experiments on five datasets demonstrate that ETS significantly outperforms existing methods across different readers. Our code and datasets will be released to facilitate future research.

pdf bib
M³GQA: A Multi-Entity Multi-Hop Multi-Setting Graph Question Answering Benchmark
Boci Peng | Yongchao Liu | Xiaohe Bo | Jiaxin Guo | Yun Zhu | Xuanbo Fan | Chuntao Hong | Yan Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, GraphRAG systems have achieved remarkable progress in enhancing the performance and reliability of large language models (LLMs). However, most previous benchmarks are template-based and primarily focus on few-entity queries, which are monotypic and simplistic, failing to offer comprehensive and robust assessments. Besides, the lack of ground-truth reasoning paths also hinders the assessments of different components in GraphRAG systems. To address these limitations, we propose M³GQA, a complex, diverse, and high-quality GraphRAG benchmark focusing on multi-entity queries, with six distinct settings for comprehensive evaluation. In order to construct diverse data with semantically correct ground-truth reasoning paths, we introduce a novel reasoning-driven four-step data construction method, including tree sampling, reasoning path backtracking, query creation, and multi-stage refinement and filtering. Extensive experiments demonstrate that M³GQA effectively reflects the capabilities of GraphRAG methods, offering valuable insights into the model performance and reliability. By pushing the boundaries of current methods, M³GQA establishes a comprehensive, robust, and reliable benchmark for advancing GraphRAG research.