Xiuwei Shang


2025

pdf bib
CompileAgent: Automated Real-World Repo-Level Compilation with Tool-Integrated LLM-based Agent System
Li Hu | Guoqiang Chen | Xiuwei Shang | Shaoyin Cheng | Benlong Wu | LiGangyang LiGangyang | Xu Zhu | Weiming Zhang | Nenghai Yu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With open-source projects growing in size and complexity, manual compilation becomes tedious and error-prone, highlighting the need for automation to improve efficiency and accuracy. However, the complexity of compilation instruction search and error resolution makes automatic compilation challenging. Inspired by the success of LLM-based agents in various fields, we propose CompileAgent, the first LLM-based agent framework dedicated to repo-level compilation. CompileAgent integrates five tools and a flow-based agent strategy, enabling interaction with software artifacts for compilation instruction search and error resolution. To measure the effectiveness of our method, we design a public repo-level benchmark CompileAgentBench, and we also design two baselines for comparison by combining two compilation-friendly schemes. The performance on this benchmark shows that our method significantly improves the compilation success rate, ranging from 10% to 71%. Meanwhile, we evaluate the performance of CompileAgent under different agent strategies and verify the effectiveness of the flow-based strategy. Additionally, we emphasize the scalability of CompileAgent, further expanding its application prospects. The complete code and data are available at https://github.com/Ch3nYe/AutoCompiler.

2024

pdf bib
RealVul: Can We Detect Vulnerabilities in Web Applications with LLM?
Di Cao | Yong Liao | Xiuwei Shang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The latest advancements in large language models (LLMs) have sparked interest in their potential for software vulnerability detection. However, there is currently a lack of research specifically focused on vulnerabilities in the PHP language, and challenges in data sampling and processing persist, hindering the model’s ability to effectively capture the characteristics of specific vulnerabilities. In this paper, we present RealVul, the first LLM-based framework designed for PHP vulnerability detection, addressing these issues. By improving code sampling methods and employing normalization techniques, we can isolate potential vulnerability triggers while streamlining the code and eliminating unnecessary semantic information, enabling the model to better understand and learn from the generated vulnerability samples. We also address the issue of insufficient PHP vulnerability samples by improving data synthesis methods. To evaluate RealVul’s performance, we conduct an extensive analysis using five distinct code LLMs on vulnerability data from 180 PHP projects. The results demonstrate a significant improvement in both effectiveness and generalization compared to existing methods, effectively boosting the vulnerability detection capabilities of these models.