Xingyu Lu
2024
Leveraging Contextual Information for Effective Entity Salience Detection
Rajarshi Bhowmik
|
Marco Ponza
|
Atharva Tendle
|
Anant Gupta
|
Rebecca Jiang
|
Xingyu Lu
|
Qian Zhao
|
Daniel Preotiuc-Pietro
Findings of the Association for Computational Linguistics: NAACL 2024
In text documents such as news articles, the content and key events usually revolve around a subset of all the entities mentioned in a document. These entities, often deemed as salient entities, provide useful cues of the aboutness of a document to a reader. Identifying the salience of entities was found helpful in several downstream applications such as search, ranking, and entity-centric summarization, among others. Prior work on salient entity detection mainly focused on machine learning models that require heavy feature engineering. We show that fine-tuning medium-sized language models with a cross-encoder style architecture yields substantial performance gains over feature engineering approaches. To this end, we conduct a comprehensive benchmarking of four publicly available datasets using models representative of the medium-sized pre-trained language model family. Additionally, we show that zero-shot prompting of instruction-tuned language models yields inferior results, indicating the task’s uniqueness and complexity.
MoleculeQA: A Dataset to Evaluate Factual Accuracy in Molecular Comprehension
Xingyu Lu
|
He Cao
|
Zijing Liu
|
Shengyuan Bai
|
Leqing Chen
|
Yuan Yao
|
Hai-Tao Zheng
|
Yu Li
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language models are playing an increasingly significant role in molecular research, yet existing models often generate erroneous information. Traditional evaluations fail to assess a model’s factual correctness. To rectify this absence, we present MoleculeQA, a novel question answering (QA) dataset which possesses 62K QA pairs over 23K molecules. Each QA pair, composed of a manual question, a positive option and three negative options, has consistent semantics with a molecular description from authoritative corpus. MoleculeQA is not only the first benchmark to evaluate molecular factual correctness but also the largest molecular QA dataset. A comprehensive evaluation on MoleculeQA for existing molecular LLMs exposes their deficiencies in specific aspects and pinpoints crucial factors for molecular modeling. Furthermore, we employ MoleculeQA in reinforcement learning to mitigate model hallucinations, thereby enhancing the factual correctness of generated information.
Scaling Laws for Fact Memorization of Large Language Models
Xingyu Lu
|
Xiaonan Li
|
Qinyuan Cheng
|
Kai Ding
|
Xuanjing Huang
|
Xipeng Qiu
Findings of the Association for Computational Linguistics: EMNLP 2024
Fact knowledge memorization is crucial for Large Language Models (LLM) to generate factual and reliable responses. However, the behaviors of LLM fact memorization remain under-explored. In this paper, we analyze the scaling laws for LLM’s fact knowledge and LLMs’ behaviors of memorizing different types of facts. We find that LLMs’ fact knowledge capacity has a linear and negative exponential law relationship with model size and training epochs, respectively. Estimated by the built scaling law, memorizing the whole Wikidata’s facts requires training an LLM with 1000B non-embed parameters for 100 epochs, suggesting that using LLMs to memorize all public facts is almost implausible for a general pre-training setting. Meanwhile, we find that LLMs can generalize on unseen fact knowledge and its scaling law is similar to general pre-training. Additionally, we analyze the compatibility and preference of LLMs’ fact memorization. For compatibility, we find LLMs struggle with memorizing redundant facts in a unified way. Only when correlated facts have the same direction and structure, the LLM can compatibly memorize them. This shows the inefficiency of LLM memorization for redundant facts. For preference, the LLM pays more attention to memorizing more frequent and difficult facts, and the subsequent facts can overwrite prior facts’ memorization, which significantly hinders low-frequency facts memorization. Our findings reveal the capacity and characteristics of LLMs’ fact knowledge learning, which provide directions for LLMs’ fact knowledge augmentation.
Search
Co-authors
- Rajarshi Bhowmik 1
- Marco Ponza 1
- Atharva Tendle 1
- Anant Gupta 1
- Rebecca Jiang 1
- show all...