Xiaoming Shi


2025

pdf bib
KwaiChat: A Large-Scale Video-Driven Multilingual Mixed-Type Dialogue Corpus
Xiaoming Shi | Zeming Liu | Yiming Lei | Chenkai Zhang | Haitao Leng | Chuan Wang | Qingjie Liu | Wanxiang Che | Yunhong Wang
Findings of the Association for Computational Linguistics: NAACL 2025

Video-based dialogue systems have compelling application value, such as education assistants, thereby garnering growing interest. However, the current video-based dialogue systems are limited by their reliance on a single dialogue type, which hinders their versatility in practical applications across a range of scenarios, including question-answering and emotionally dialog, etc. In this paper, we identify this challenge as how to generate video-driven multilingual mixed-type dialogues. To mitigate this challenge, we propose a novel task and create a human-to-human video-driven multilingual mixed-type dialogue corpus, termed KwaiChat, containing a total of 93,209 videos and 246,080 dialogues, across 4 dialogue types, 30 domains, 4 languages, and 13 topics. Additionally, we establish baseline models on KwaiChat. An extensive analysis of 7 distinct LLMs on KwaiChat reveals that GPT-4o achieves the best performance but still cannot perform well in this situation even with the help of in-context learning and fine-tuning, which indicates that the task is not trivial and needs further research.

pdf bib
Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring
Honglin Mu | Han He | Yuxin Zhou | Yunlong Feng | Yang Xu | Libo Qin | Xiaoming Shi | Zeming Liu | Xudong Han | Qi Shi | Qingfu Zhu | Wanxiang Che
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language model (LLM) safety is a critical issue, with numerous studies employing red team testing to enhance model security. Among these, jailbreak methods explore potential vulnerabilities by crafting malicious prompts that induce model outputs contrary to safety alignments. Existing black-box jailbreak methods often rely on model feedback, repeatedly submitting queries with detectable malicious instructions during the attack search process. Although these approaches are effective, the attacks may be intercepted by content moderators during the search process. We propose an improved transfer attack method that guides malicious prompt construction by locally training a mirror model of the target black-box model through benign data distillation. This method offers enhanced stealth, as it does not involve submitting identifiable malicious instructions to the target model during the search phase. Our approach achieved a maximum attack success rate of 92%, or a balanced value of 80% with an average of 1.5 detectable jailbreak queries per sample against GPT-3.5 Turbo on a subset of AdvBench. These results underscore the need for more robust defense mechanisms.

2024

pdf bib
Medical Dialogue System: A Survey of Categories, Methods, Evaluation and Challenges
Xiaoming Shi | Zeming Liu | Li Du | Yuxuan Wang | Hongru Wang | Yuhang Guo | Tong Ruan | Jie Xu | Xiaofan Zhang | Shaoting Zhang
Findings of the Association for Computational Linguistics: ACL 2024

This paper surveys and organizes research works of medical dialog systems, which is an important yet challenging task. Although these systems have been surveyed in the medical community from an application perspective, a systematic review from a rigorous technical perspective has to date remained noticeably absent. As a result, an overview of the categories, methods, evaluation of medical dialogue systems remain limited and underspecified, hindering the further improvement of this area. To fill this gap, we investigate an initial pool of 325 papers from well-known computer science, natural language processing conferences and journals, and make an overview. Recently, large language models have shown strong model capacity on downstream tasks, which also reshape medical dialog systems’ foundation.Despite the alluring practical application value, current medical dialogue systems still suffer from problems. To this end, this paper lists grand challenges of medical dialog systems, especially of large language models.

2023

pdf bib
MidMed: Towards Mixed-Type Dialogues for Medical Consultation
Xiaoming Shi | Zeming Liu | Chuan Wang | Haitao Leng | Kui Xue | Xiaofan Zhang | Shaoting Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most medical dialogue systems assume that patients have clear goals (seeking a diagnosis, medicine querying, etc.) before medical consultation. However, in many real situations, due to the lack of medical knowledge, it is usually difficult for patients to determine clear goals with all necessary slots. In this paper, we identify this challenge as how to construct medical consultation dialogue systems to help patients clarify their goals. For further study, we create a novel human-to-human mixed-type medical consultation dialogue corpus, termed MidMed, covering four dialogue types: task-oriented dialogue for diagnosis, recommendation, QA, and chitchat. MidMed covers four departments (otorhinolaryngology, ophthalmology, skin, and digestive system), with 8,309 dialogues. Furthermore, we build benchmarking baselines on MidMed and propose an instruction-guiding medical dialogue generation framework, termed InsMed, to handle mixed-type dialogues. Experimental results show the effectiveness of InsMed.

2021

pdf bib
A Three-step Method for Multi-Hop Inference Explanation Regeneration
Yuejia Xiang | Yunyan Zhang | Xiaoming Shi | Bo Liu | Wandi Xu | Xi Chen
Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)

Multi-hop inference for explanation generation is to combine two or more facts to make an inference. The task focuses on generating explanations for elementary science questions. In the task, the relevance between the explanations and the QA pairs is of vital importance. To address the task, a three-step framework is proposed. Firstly, vector distance between two texts is utilized to recall the top-K relevant explanations for each question, reducing the calculation consumption. Then, a selection module is employed to choose those most relative facts in an autoregressive manner, giving a preliminary order for the retrieved facts. Thirdly, we adopt a re-ranking module to re-rank the retrieved candidate explanations with relevance between each fact and the QA pairs. Experimental results illustrate the effectiveness of the proposed framework with an improvement of 39.78% in NDCG over the official baseline.