Xiaokun Zhang


2025

pdf bib
Commonality and Individuality! Integrating Humor Commonality with Speaker Individuality for Humor Recognition
Haohao Zhu | Xiaokun Zhang | Zeyuan Zeng | Junyu Lu | Zewen Bai | Liang Yang | Hongfei Lin
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Humor recognition aims to identify whether a specific speaker’s text is humorous. Current methods for humor recognition mainly suffer from two limitations: (1) they solely focus on one aspect of humor commonalities, ignoring the multifaceted nature of humor; and (2) they typically overlook the critical role of speaker individuality, which is essential for a comprehensive understanding of humor expressions. To bridge these gaps, we introduce the Commonality and Individuality Incorporated Network for Humor Recognition (CIHR), a novel model designed to enhance humor recognition by integrating multifaceted humor commonalities with the distinctive individuality of speakers. The CIHR features a Humor Commonality Analysis module that explores various perspectives of multifaceted humor commonality within user texts, and a Speaker Individuality Extraction module that captures both static and dynamic aspects of a speaker’s profile to accurately model their distinctive individuality. Additionally, Static and Dynamic Fusion modules are introduced to effectively incorporate the humor commonality with speaker’s individuality in the humor recognition process. Extensive experiments demonstrate the effectiveness of CIHR, underscoring the importance of concurrently addressing both multifaceted humor commonality and distinctive speaker individuality in humor recognition.

2024

pdf bib
Unity in Diversity: Collaborative Pre-training Across Multimodal Medical Sources
Xiaochen Wang | Junyu Luo | Jiaqi Wang | Yuan Zhong | Xiaokun Zhang | Yaqing Wang | Parminder Bhatia | Cao Xiao | Fenglong Ma
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Although pre-training has become a prevalent approach for addressing various biomedical tasks, the current efficacy of pre-trained models is hindered by their reliance on a limited scope of medical sources. This limitation results in data scarcity during pre-training and restricts the range of applicable downstream tasks. In response to these challenges, we develop MedCSP, a new pre-training strategy designed to bridge the gap between multimodal medical sources. MedCSP employs modality-level aggregation to unify patient data within individual sources. Additionally, leveraging temporal information and diagnosis history, MedCSP effectively captures explicit and implicit correlations between patients across different sources. To evaluate the proposed strategy, we conduct comprehensive experiments, where the experiments are based on 6 modalities from 2 real-world medical data sources, and MedCSP is evaluated on 4 tasks against 19 baselines, marking an initial yet essential step towards cross-source modeling in the medical domain.

pdf bib
Take Its Essence, Discard Its Dross! Debiasing for Toxic Language Detection via Counterfactual Causal Effect
Junyu Lu | Bo Xu | Xiaokun Zhang | Kaiyuan Liu | Dongyu Zhang | Liang Yang | Hongfei Lin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Researchers have attempted to mitigate lexical bias in toxic language detection (TLD). However, existing methods fail to disentangle the “useful” and “misleading” impact of lexical bias on model decisions. Therefore, they do not effectively exploit the positive effects of the bias and lead to a degradation in the detection performance of the debiased model. In this paper, we propose a Counterfactual Causal Debiasing Framework (CCDF) to mitigate lexical bias in TLD. It preserves the “useful impact” of lexical bias and eliminates the “misleading impact”. Specifically, we first represent the total effect of the original sentence and biased tokens on decisions from a causal view. We then conduct counterfactual inference to exclude the direct causal effect of lexical bias from the total effect. Empirical evaluations demonstrate that the debiased TLD model incorporating CCDF achieves state-of-the-art performance in both accuracy and fairness compared to competitive baselines applied on several vanilla models. The generalization capability of our model outperforms current debiased models for out-of-distribution data.

2023

pdf bib
Facilitating Fine-grained Detection of Chinese Toxic Language: Hierarchical Taxonomy, Resources, and Benchmarks
Junyu Lu | Bo Xu | Xiaokun Zhang | Changrong Min | Liang Yang | Hongfei Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The widespread dissemination of toxic online posts is increasingly damaging to society. However, research on detecting toxic language in Chinese has lagged significantly due to limited datasets. Existing datasets suffer from a lack of fine-grained annotations, such as the toxic type and expressions with indirect toxicity. These fine-grained annotations are crucial factors for accurately detecting the toxicity of posts involved with lexical knowledge, which has been a challenge for researchers. To tackle this problem, we facilitate the fine-grained detection of Chinese toxic language by building a new dataset with benchmark results. First, we devised Monitor Toxic Frame, a hierarchical taxonomy to analyze the toxic type and expressions. Then, we built a fine-grained dataset ToxiCN, including both direct and indirect toxic samples. ToxiCN is based on an insulting vocabulary containing implicit profanity. We further propose a benchmark model, Toxic Knowledge Enhancement (TKE), by incorporating lexical features to detect toxic language. We demonstrate the usability of ToxiCN and the effectiveness of TKE based on a systematic quantitative and qualitative analysis.

2022

pdf bib
RealMedDial: A Real Telemedical Dialogue Dataset Collected from Online Chinese Short-Video Clips
Bo Xu | Hongtong Zhang | Jian Wang | Xiaokun Zhang | Dezhi Hao | Linlin Zong | Hongfei Lin | Fenglong Ma
Proceedings of the 29th International Conference on Computational Linguistics

Intelligent medical services have attracted great research interests for providing automated medical consultation. However, the lack of corpora becomes a main obstacle to related research, particularly data from real scenarios. In this paper, we construct RealMedDial, a Chinese medical dialogue dataset based on real medical consultation. RealMedDial contains 2,637 medical dialogues and 24,255 utterances obtained from Chinese short-video clips of real medical consultations. We collected and annotated a wide range of meta-data with respect to medical dialogue including doctor profiles, hospital departments, diseases and symptoms for fine-grained analysis on language usage pattern and clinical diagnosis. We evaluate the performance of medical response generation, department routing and doctor recommendation on RealMedDial. Results show that RealMedDial are applicable to a wide range of NLP tasks with respect to medical dialogue.