Woosang Lim


2025

pdf bib
Grouped Sequency-arranged Rotation: Optimizing Rotation Transformation for Quantization for Free
Euntae Choi | Sumin Song | Woosang Lim | Sungjoo Yoo
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Large Language Models (LLMs) face deployment challenges due to high computational costs, and while Post-Training Quantization (PTQ) offers a solution, existing rotation-based methods struggle at very low bit-widths like 2-bit. We introduce a novel, training-free approach to construct an improved rotation matrix, addressing the limitations of current methods. The key contributions include leveraging the Walsh-Hadamard transform with sequency ordering, which clusters similar frequency components to reduce quantization error compared to standard Hadamard matrices, significantly improving performance. Furthermore, we propose a Grouped Sequency-arranged Rotation (GSR) using block-diagonal matrices with smaller Walsh blocks, effectively isolating outlier impacts and achieving performance comparable to optimization-based methods without requiring any training. Our method demonstrates robust performance on reasoning tasks and Perplexity (PPL) score on WikiText-2. Our method also enhances results even when applied over existing learned rotation techniques.

2024

pdf bib
Moleco: Molecular Contrastive Learning with Chemical Language Models for Molecular Property Prediction
Jun-Hyung Park | Hyuntae Park | Yeachan Kim | Woosang Lim | SangKeun Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Pre-trained chemical language models (CLMs) excel in the field of molecular property prediction, utilizing string-based molecular descriptors such as SMILES for learning universal representations. However, such string-based descriptors implicitly contain limited structural information, which is closely associated with molecular property prediction. In this work, we introduce Moleco, a novel contrastive learning framework to enhance the understanding of molecular structures within CLMs. Based on the similarity of fingerprint vectors among different molecules, we train CLMs to distinguish structurally similar and dissimilar molecules in a contrastive manner. Experimental results demonstrate that Moleco significantly improves the molecular property prediction performance of CLMs, outperforming state-of-the-art models. Moreover, our in-depth analysis with diverse Moleco variants verifies that fingerprint vectors are highly effective features in improving CLMs’ understanding of the structural information of molecules.

2014

pdf bib
Optimizing Generative Dialog State Tracker via Cascading Gradient Descent
Byung-Jun Lee | Woosang Lim | Daejoong Kim | Kee-Eung Kim
Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL)