Wenxi Li
2025
Compositional Syntactico-SemBanking for English as a Second or Foreign Language
Wenxi Li
|
Xihao Wang
|
Weiwei Sun
Findings of the Association for Computational Linguistics: ACL 2025
Despite the widespread use of English as a Second or Foreign Language (ESFL), developing syntactico-semantic representations for it is limited — the irregularities in ESFL complicate systematic composition and subsequently the derivation of its semantics.This paper draws on constructivism and proposes a novel Synchronous Hyperedge Replacement Grammar (SHRG)-based constructivist approach to address the challenges. By using constructions as fundamental units, this approach not only accommodates both the idiosyncrasies and the compositional nature of ESFL, but also bridges the gap between literal cues and intended meaning.The feasibility of this constructivist approach is demonstrated using real ESFL data, resulting in a gold-standard, medium-sized syntactico-semantic bank that covers a wide range of ESFL phenomena.
2024
UG-schematic Annotation for Event Nominals: A Case Study in Mandarin Chinese
Wenxi Li
|
Yutong Zhang
|
Guy Emerson
|
Weiwei Sun
Computational Linguistics, Volume 50, Issue 2 - June 2023
Divergence of languages observed at the surface level is a major challenge encountered by multilingual data representation, especially when typologically distant languages are involved. Drawing inspiration from a formalist Chomskyan perspective towards language universals, Universal Grammar (UG), this article uses deductively pre-defined universals to analyze a multilingually heterogeneous phenomenon, event nominals. In this way, deeper universality of event nominals beneath their huge divergence in different languages is uncovered, which empowers us to break barriers between languages and thus extend insights from some synthetic languages to a non-inflectional language, Mandarin Chinese. Our empirical investigation also demonstrates this UG-inspired schema is effective: With its assistance, the inter-annotator agreement (IAA) for identifying event nominals in Mandarin grows from 88.02% to 94.99%, and automatic detection of event-reading nominalizations on the newly-established data achieves an accuracy of 94.76% and an F1 score of 91.3%, which significantly surpass those achieved on the pre-existing resource by 9.8% and 5.2%, respectively. Our systematic analysis also sheds light on nominal semantic role labeling. By providing a clear definition and classification on arguments of event nominal, the IAA of this task significantly increases from 90.46% to 98.04%.
2021
Universal Semantic Tagging for English and Mandarin Chinese
Wenxi Li
|
Yiyang Hou
|
Yajie Ye
|
Li Liang
|
Weiwei Sun
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Universal Semantic Tagging aims to provide lightweight unified analysis for all languages at the word level. Though the proposed annotation scheme is conceptually promising, the feasibility is only examined in four Indo–European languages. This paper is concerned with extending the annotation scheme to handle Mandarin Chinese and empirically study the plausibility of unifying meaning representations for multiple languages. We discuss a set of language-specific semantic phenomena, propose new annotation specifications and build a richly annotated corpus. The corpus consists of 1100 English–Chinese parallel sentences, where compositional semantic analysis is available for English, and another 1000 Chinese sentences which has enriched syntactic analysis. By means of the new annotations, we also evaluate a series of neural tagging models to gauge how successful semantic tagging can be: accuracies of 92.7% and 94.6% are obtained for Chinese and English respectively. The English tagging performance is remarkably better than the state-of-the-art by 7.7%.