Will Hipson


2020

pdf
SOLO: A Corpus of Tweets for Examining the State of Being Alone
Svetlana Kiritchenko | Will Hipson | Robert Coplan | Saif M. Mohammad
Proceedings of the Twelfth Language Resources and Evaluation Conference

The state of being alone can have a substantial impact on our lives, though experiences with time alone diverge significantly among individuals. Psychologists distinguish between the concept of solitude, a positive state of voluntary aloneness, and the concept of loneliness, a negative state of dissatisfaction with the quality of one’s social interactions. Here, for the first time, we conduct a large-scale computational analysis to explore how the terms associated with the state of being alone are used in online language. We present SOLO (State of Being Alone), a corpus of over 4 million tweets collected with query terms solitude, lonely, and loneliness. We use SOLO to analyze the language and emotions associated with the state of being alone. We show that the term solitude tends to co-occur with more positive, high-dominance words (e.g., enjoy, bliss) while the terms lonely and loneliness frequently co-occur with negative, low-dominance words (e.g., scared, depressed), which confirms the conceptual distinctions made in psychology. We also show that women are more likely to report on negative feelings of being lonely as compared to men, and there are more teenagers among the tweeters that use the word lonely than among the tweeters that use the word solitude.

pdf
PoKi: A Large Dataset of Poems by Children
Will Hipson | Saif M. Mohammad
Proceedings of the Twelfth Language Resources and Evaluation Conference

Child language studies are crucial in improving our understanding of child well-being; especially in determining the factors that impact happiness, the sources of anxiety, techniques of emotion regulation, and the mechanisms to cope with stress. However, much of this research is stymied by the lack of availability of large child-written texts. We present a new corpus of child-written text, PoKi, which includes about 62 thousand poems written by children from grades 1 to 12. PoKi is especially useful in studying child language because it comes with information about the age of the child authors (their grade). We analyze the words in PoKi along several emotion dimensions (valence, arousal, dominance) and discrete emotions (anger, fear, sadness, joy). We use non-parametric regressions to model developmental differences from early childhood to late-adolescence. Results show decreases in valence that are especially pronounced during mid-adolescence, while arousal and dominance peaked during adolescence. Gender differences in the developmental trajectory of emotions are also observed. Our results support and extend the current state of emotion development research.