Wenhao Shi


2024

pdf
Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models
Wenhao Shi | Zhiqiang Hu | Yi Bin | Junhua Liu | Yang Yang | See-Kiong Ng | Lidong Bing | Roy Ka-Wei Lee
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) have demonstrated impressive reasoning capabilities, particularly in textual mathematical problem-solving. However, existing open-source image instruction fine-tuning datasets, containing limited question-answer pairs per image, do not fully exploit visual information to enhance the multimodal mathematical reasoning capabilities of Multimodal LLMs (MLLMs). To bridge this gap, we address the lack of high-quality, diverse multimodal mathematical datasets by collecting 40K high-quality images with question-answer pairs from 24 existing datasets and synthesizing 320K new pairs, creating the MathV360K dataset, which enhances both the breadth and depth of multimodal mathematical questions. We introduce Math-LLaVA, a LLaVA-1.5-based model fine-tuned with MathV360K. This novel approach significantly improves the multimodal mathematical reasoning capabilities of LLaVA-1.5, achieving a 19-point increase and comparable performance to GPT-4V on MathVista’s minitest split, and yielding leading performance on Math-V and MathVerse. Furthermore, Math-LLaVA demonstrates enhanced generalizability, showing substantial improvements on the MMMU benchmark. Our research highlights the importance of dataset diversity and synthesis in advancing MLLMs’ mathematical reasoning abilities. The code and data are available at: https://github.com/HZQ950419/Math-LLaVA.

2023

pdf
Non-Autoregressive Sentence Ordering
Yi Bin | Wenhao Shi | Bin Ji | Jipeng Zhang | Yujuan Ding | Yang Yang
Findings of the Association for Computational Linguistics: EMNLP 2023

Existing sentence ordering approaches generally employ encoder-decoder frameworks with the pointer net to recover the coherence by recurrently predicting each sentence step-by-step. Such an autoregressive manner only leverages unilateral dependencies during decoding and cannot fully explore the semantic dependency between sentences for ordering. To overcome these limitations, in this paper, we propose a novel Non-Autoregressive Ordering Network, dubbed NAON, which explores bilateral dependencies between sentences and predicts the sentence for each position in parallel. We claim that the non-autoregressive manner is not just applicable but also particularly suitable to the sentence ordering task because of two peculiar characteristics of the task: 1) each generation target is in deterministic length, and 2) the sentences and positions should match exclusively. Furthermore, to address the repetition issue of the naive non-autoregressive Transformer, we introduce an exclusive loss to constrain the exclusiveness between positions and sentences. To verify the effectiveness of the proposed model, we conduct extensive experiments on several common-used datasets and the experimental results show that our method outperforms all the autoregressive approaches and yields competitive performance compared with the state-of-the-arts. The codes are available at: https://github.com/steven640pixel/nonautoregressive-sentence-ordering.

pdf
Non-Autoregressive Math Word Problem Solver with Unified Tree Structure
Yi Bin | Mengqun Han | Wenhao Shi | Lei Wang | Yang Yang | See-Kiong Ng | Heng Shen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Existing MWP solvers employ sequence or binary tree to present the solution expression and decode it from given problem description. However, such structures fail to handle the variants that can be derived via mathematical manipulation, e.g., (a1+a2)*a3 and a1 * a3+a2 * a3 can both be possible valid solutions for a same problem but formulated as different expression sequences or trees. The multiple solution variants depicting different possible solving procedures for the same input problem would raise two issues: 1) making it hard for the model to learn the mapping function between the input and output spaces effectively, and 2) wrongly indicating wrong when evaluating a valid expression variant. To address these issues, we introduce a unified tree structure to present a solution expression, where the elements are permutable and identical for all the expression variants. We propose a novel non-autoregressive solver, named MWP-NAS, to parse the problem and deduce the solution expression based on the unified tree. For evaluating the possible expression variants, we design a path-based metric to evaluate the partial accuracy of expressions of a unified tree. The results from extensive experiments conducted on Math23K and MAWPS demonstrate the effectiveness of our proposed MWP-NAS. The codes and checkpoints are available at: https://github.com/mengqunhan/MWP-NAS.