Current benchmarks for large language model (LLM) reasoning predominantly focus on mathematical and coding abilities, leaving a gap in evaluating broader reasoning proficiencies. One particular exception is the BIG-Bench dataset, which has served as a crucial benchmark for evaluating the general reasoning capabilities of LLMs, thanks to its diverse set of challenging tasks that allowed for a comprehensive assessment of general reasoning across various skills within a unified framework. However, recent advances in LLMs have led to saturation on BIG-Bench, and its harder version BIG-Bench Hard (BBH). State-of-the-art models achieve near-perfect scores on many tasks in BBH, thus diminishing its utility. To address this limitation, we introduce BIG-Bench Extra Hard (BBEH), a new benchmark designed to push the boundaries of LLM reasoning evaluation. BBEH replaces each task in BBH with a novel task that probes a similar reasoning capability but exhibits significantly increased difficulty. We evaluate various general-purpose and reasoning-specialized models on BBEH and observe an accuracy of 23.9% for the best general-purpose model and 54.2% for the best reasoning-specialized model, indicating substantial room for improvement and highlighting the ongoing challenge of achieving robust general reasoning in LLMs. We release BBEH publicly at: https://github.com/google-deepmind/bbeh.
Human understanding of text depends on general semantic concepts of words rather than their superficial forms. To what extent does our human intuition transfer to language models? In this work, we study the degree to which current multilingual language models (mLMs) understand based on subword-level semantic concepts. To this end, we form “semantic tokens” by merging the semantically similar subwords and their embeddings, and evaluate the updated mLMs on five heterogeneous multilingual downstream tasks. Results show that the general shared semantics could get the models a long way in making the predictions on mLMs with different tokenizers and model sizes. Inspections of the grouped subwords show that they exhibit a wide range of semantic similarities, including synonyms and translations across many languages and scripts. Lastly, we find that the zero-shot results with semantic tokens are on par with or even better than the original models on certain classification tasks, suggesting that the shared subword-level semantics may serve as the anchors for cross-lingual transfer.
Differentiable Search Indices (DSIs) encode a corpus of documents in the parameters of a model and use the same model to map queries directly to relevant document identifiers. Despite the solid performance of DSI models, successfully deploying them in scenarios where document corpora change with time is an open problem. In this work, we introduce DSI++, a continual learning challenge for DSI with the goal of continuously indexing new documents while being able to answer queries related to both previously and newly indexed documents. Across different model scales and document identifier representations, we show that continual indexing of new documents leads to considerable forgetting of previously indexed documents. We also hypothesize and verify that the model experiences forgetting events during training, leading to unstable learning. To mitigate these issues, we investigate two approaches. The first focuses on modifying the training dynamics. Flatter minima implicitly alleviates forgetting, so we explicitly optimize for flatter loss basins and show that the model stably memorizes more documents (+12%). Next, we introduce a parametric memory to generate pseudo-queries for documents and supplement them during incremental indexing to prevent forgetting for the retrieval task. Extensive experiments on a novel continual indexing benchmark based on Natural Questions demonstrate that our proposed solution mitigates the forgetting in DSI++ by a significant margin and improves the average Hits@10 by +21.1% over competitive baselines.